
A Syntactic Approach for Searching Similarities within
Sentences

Federica Mandreoli
DII - Univ. di Modena e

Reggio Emilia
via Vignolese, 905

Modena - Italy

fmandreoli@unimo.it

Riccardo Martoglia
DII - Univ. di Modena e

Reggio Emilia
via Vignolese, 905

Modena - Italy

rmartoglia@unimo.it

Paolo Tiberio
DII - Univ. di Modena e

Reggio Emilia
via Vignolese, 905

Modena - Italy

ptiberio@unimo.it

ABSTRACT
Textual data is the main electronic form of knowledge rep-
resentation. Sentences, meant as logic units of meaning-
ful word sequences, can be considered its backbone. In
this paper, we propose a solution based on a purely syn-
tactic approach for searching similarities within sentences,
named approximate sub2sequence matching. This process
being very time consuming, efficiency in retrieving the most
similar parts available in large repositories of textual data
is ensured by making use of new filtering techniques. As
far as the design of the system is concerned, we chose a so-
lution that allows us to deploy approximate sub2sequence
matching without changing the underlying database.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information filtering, search process;
I.5.4 [Patter Recognition]: Applications—Text processing

General Terms
Algorithm, design, performance

Keywords
Sentence similarity measure, sequence matching

1. INTRODUCTION
Textual data is the main electronic form of knowledge

representation. With the advent of databases, storing large
amounts of textual data has become an effortless and wi-
despread task. On the other hand, exploiting the full po-
tentiality of unstructured repositories and thus understand-
ing the utility of the information they contain is a much
more complex task, strictly connected to the application
they serve. Sentences, meant as logic units of meaningful

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
CIKM’02, November 4–9, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-492-4/02/0011 ...$5.00.

word sequences, can be considered the backbone of textual
data. Searching in sentence repositories often requires to
go beyond exact matching to determine the sentences which
are similar or close to a given query sentence. The similar-
ity involved in this process can be based just on the syntax
of the sentence, disregarding its semantical content while
identifying similar word sequences. Many applications may
benefit from such a facility, from EBMT (Example-Based
Machine Translation) systems to syntactical document sim-
ilarity search and the correlation of independent sentence
repositories. We argue that the kind of similarity match-
ing useful for most of the applications we consider should
go beyond the search for whole sentences. The similarity
matching we refer to attempts to match any parts of data
sentences against any query parts. Although complex, this
kind of search enables the detection of similarities that could
otherwise be unidentified.
In this paper, we propose a solution based on a purely syn-

tactic approach for searching similarities within sentences,
named approximate sub2sequence matching, and fitting into
the DBMS context, which represents the most common choice
adopted by the above cited applications for managing their
large amount of textual data. The underlying similarity
measure is exploitable for any language since it is based
on the similarity between sequences of terms such that the
parts most close to a given one are those which maintain
most of the original form and contents. Applying an approx-
imate sub2sequence matching algorithm to a given query
sentence and a collection of data sentences is extremely time
consuming. Efficiency in retrieving the most similar parts
available in the sentence repository is ensured by exploiting
filtering techniques. We introduce two new filters for the
approximate sub2sequence matching which quickly discard
sequences that cannot match, efficiently ensuring no false
dismissals and few false positives.

2. APPROXIMATE SENTENCE MATCHING
The problem of searching similarities between sentences is

addressed by introducing a syntactic approach which ana-
lyzes the sentence contents in order to find similar parts. We
consider a sentence as a sequence of terms and we character-
ize the problem of approximate matching between sentences
as a problem of searching for similar sequences correspond-
ing to the whole sentences or parts of them.
In this context, we adopt the edit distance [6] as sim-

ilarity measure between (parts of) sentences. More pre-

cisely, given two sentences as sequences of terms S1 and
S2, ed(S1[i1 . . . j1], S2[i2 . . . j2]) denotes the edit distance be-
tween the two parts S1[i1 . . . j1] and S2[i2 . . . j2].
The operation of approximate matching that we intro-

duce in the following definition extends the notion of sub-
sequence/whole matching [3] in order to locate (parts of)
sentences that match (parts of) query sentences.

Definition 1. Given a collection of query sentences Q and
a collection of data sentences D not necessarily distinct, a
distance threshold d and a minimum length minL, find all
pairs of sequences (S1[i1 . . . j1], S2[i2 . . . j2]) such that S1 ∈

Q, S2 ∈ D, (j1 − i1 + 1) ≥ minL, (j2 − i2 + 1) ≥ minL and
ed(S1[i1 . . . j1], S2[i2 . . . j2]) ≤ d.

Applying an approximate sub2sequence matching algo-
rithm to a given query sentence and a collection of data sen-
tences is extremely time consuming. The main challenge is
thus to find filtering techniques suitable for the problem in-
troduced in Def. 1. Such filtering techniques should operate
on whole sentence pairs and efficiently hypothesize a small
set of them as matching candidates. As to sentence content,
only that of the candidate answers will be further analyzed.
To this purpose, we introduce two new filters for the ap-
proximate sub2sequence matching, namely sub2count filter
and sub2position filter, which quickly discard sequences that
cannot match, efficiently ensuring no false dismissals and
few false positives. sub2Count filtering relies on a minimum
number of common short subsequences of length q (known
as q-grams) which two matching sentences are required to
share. sub2Position filtering takes into account the relative
positions of individual q-gram matches requiring them to be
relatively close.
The approximate sub2sequence matching problem can be

easily expressed in any database system supporting user-
defined functions (UDFs), such as Oracle and DB2. The
immediate practical benefit of our techniques is that approx-
imate search can be widely and efficiently deployed without
changes to the underlying database. Let D be a table con-
taining the data sentences and Q an auxiliary table storing
the query sentences, which is created on-the-fly. Both ta-
bles share the same schema (COD, SENT), where COD is the
key attribute and SENT the sentence. In order to enable
approximate sub2sequence matching processing through fil-
tering techniques based on q-grams, the database must be
augmented with the data about q-grams corresponding to
the data and query sentences, maintained in D and Q respec-
tively, and stored in two auxiliary tables Qq and Dq with the
same schema (COD,POS,Qgram). For each sentence S, its
positional q-grams are represented as separate tuples in the
above tables, where POS identifies the position of the q-gram
Qgram. The positional q-grams of S share the same value for
the attribute COD, which serves as the foreign key attribute
to the table storing S.
The SQL expression exploiting filtering techniques for ap-

proximate sub2sequence matches has the form pictured in
Figure 1. It shows that filters can be expressed as an SQL
expression and efficiently implemented by a commercial rela-
tional query engine. The involved SQL expression joins the
auxiliary tables for q-gram sentences, Dq and Qq, with the
query table Q and the data table D to retrieve the sentence
pairs to be further analysed for approximate sub2sequence
matches. The sub2Position filtering algorithm is implemented
by means of an UDF function sub2Position(S1,S2,minL,d).

SELECT S1.COD AS COD1, S2.COD AS COD2
FROM Q S1, Qq S1q, D S2, Dq S2q
WHERE S1.COD = S1q.COD
AND S2.COD = S2q.COD
AND S1q.Qgram = S2q.Qgram

-- position filtering
AND sub2Position(S1.SENT, S2.SENT, minL, d)

-- count filtering
GROUP BY S1.COD, S2.COD
HAVING COUNT(*) >= minL + 1 - (d + 1)*q

Figure 1: Query for approximate sub2sequence

match filtering

1,0E+01

1,0E+02

1,0E+03

1,0E+04

1,0E+05

1,0E+06

1,0E+07

1,0E+08

minL=3, d=1, q=1 minL=6, d=1, q=3 minL=4, d=2, q=1 minL=4, d=1, q=2

C
an

d
id

at
e

S
et

 S
iz

e

Real Sub2Pos Sub2Count Cross Product

Figure 2: Filtering tests

The sub2Count filtering is implemented by comparing the
number of q-gram matches with the length of the involved
sentences.

3. EXPERIMENTAL EVALUATION
Performances were tested in relation to the efficiency of

the proposed search techniques. The main objective of filter-
ing techniques is to reduce the number of candidate answer
pairs. Obviously, the more filters are effective the more the
size of candidate answers gets near to the size of the answer
set.
In order to examine how effective each filter and each

combination of filters is we ran different queries, enabling
different filters each time, and measured the size of the can-
didate set with respect to the cross product of the query
sentences and data sentences. We conducted experiments on
a collection of 34550 reference sentences against 421 query
sentences. Performance trends were observed under the pa-
rameters that are associated with our problem, that is the
minimum length minL, and the number of allowed errors d.
The most meaningful experiments are shown in Fig. 2. Ob-
viously, the sub2Position filter always filters better than the
sub2Count filter since, besides counting the number of equal
words, it also considers their positions. For this reason, we
did not take into account possible combinations of filters. In
particular the sub2Count filter gave a candidate answer that
was between 0.003% to 11% of the cross-product size and
sub2Position filter filters from five to tens of times better
than the sub2Count filter. In any case, the sub2Count fil-
ter works better with q values greater than 1 and preferably

1427

1369

1052

1504

68

380

19

358

540

640

456

625

22

131

17

144

0 200 400 600 800 1000 1200 1400 1600

m
in

L
=3

, d
=1

, q
=1

m
in

L
=6

, d
=1

, q
=3

m
in

L
=4

, d
=2

, q
=1

m
in

L
=4

, d
=1

, q
=2

Seconds

No filters Sub2Count Sub2Pos Sub2Count & Sub2Pos

Figure 3: Running time tests

smaller than 4. The comparison of the two alternatives hav-
ing minL = 4 shows it: setting q = 2 doubles the filtering
performance. Even more evident is the case of q = 3 where
the reduction of all the data sets is more than 99.8% .
Another key aspect of filtering techniques is their effi-

ciency. Indeed, for a filter to be useful its response time
should not be greater than the processing time of just the
match algorithm on the whole cross product. In order to ex-
amine how efficient each combination of filters and matching
algorithm is, we ran different queries, enabling different fil-
ters each time, and measured the response time. Figure 3
presents the response times of the experiments detailed in
the effectiveness of filters paragraph. In particular, it shows
the times required to get the answer sentence pairs for each
possible combination of filters (denoted as Sub2Count and
Sub2Pos). The assessment and evaluation of the obtained
values focus on determining the best choice for filters with
respect to the parameter values. Enabling filtering tech-
niques reduces the response time of at least 7 times in the
worst case. In particular, any combination that includes
the sub2Count filter always improves the prototype perfor-
mances. Indeed, even if it filters less than the sub2Position
filter (see Fig. 2), it plays an important role by pruning out
a large portion of sentence pairs and thus leaving a small
set of them on which the sub2Position filter or directly the
matching algorithm is applied. Moreover, its execution re-
quires a small amount of time since it relies on the facilities
offered by the DBMS.

4. RELATED WORK
A large work body has been devoted to the problem of

matching sequences with respect to a similarity measure.
Starting from the works of Faloutsos et al. [3] addressing the
problem of whole and subsequence matching for sequences of
the same length, the problem has been considered in differ-
ent fields such as text and information processing, genetics
(e.g. [1]), and time series (e.g. [5]). In particular, the pa-
per [1] presents a fast algorithm for all-against-all genetic
sequence matching. They adopt a suffix tree as indexing
method in order to efficiently compare all possible sequences.
As far as text and information processing is concerned,

the work [6] is an excellent survey on the current techniques
to cope with the problem of string matching allowing er-
rors. The problem has been addressed by proposing solu-
tions based on specific algorithms (e.g. [7]), indexes (e.g.
[2]), and filters (e.g. [4]). Such solutions are limited to the
problem of string matching and substring matching, where
in the latter case the main objective is to verify if a pat-
tern string is contained in a given text without necessar-
ily locating the exact position of the occurrences. As to
indexes, customized secondary storage indexes or indexing
techniques for arbitrary metric spaces have to be supported
by the DBMS in order to be useful for techniques accessing
large amounts of data stored in databases, such as the ap-
proach we propose. Amongst the others, we found the work
[4] of particular interest. It presents some filtering tech-
niques relying on a DBMS for approximate string joins and
it offered the starting ideas for our work.

5. CONCLUSIONS
Searching similarities between sentences is essential for

many applications. The main contributions of this paper
are the proposal of a similarity measure between sequences
of terms exploitable for any language and the definition of
the sub2sequence approximate matching which searches for
matches within sentences. Efficiency and portability are en-
sured by the introduction of ad-hoc filtering techniques and
a mapping into plain SQL expressions, respectively. We
showed that the performance of the matching processing
for the reference applications can widely benefit from the
adoption of our techniques.

6. REFERENCES
[1] R. Baeza-Yates and G. Gonnet. A Fast Algorithm on
Average for All-Against-All Sequence Matching. In
Proc. of the Int’l Workshop and Symposium on String
Processing and Information Retrieval (SPIRE), pages
16–23, 1999.

[2] A. Cobbs. Fast Approximate Matching Using Suffix
Trees. In Proc. of the 6th Int’l Symposium on
Combinatorial Pattern Matching (CPM), pages 41–54,
1995.

[3] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos.
Fast Subsequence Matching in Time-Series Databases.
In Proc. of the 1994 ACM SIGMOD Int’l Conf. on
Management of Data, pages 419–429, 1994.

[4] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate
String Joins in a Database (Almost) for Free. In Proc.
of 27th Int’l Conf. on Very Large DataBases (VLDB),
2001.

[5] T. Kahveci and A. Singh. Variable Length Queries for
Time Series Data. In Proc. of the 17th Int’l Conf. on
Data Engineering (ICDE), pages 273–282, 2001.

[6] G. Navarro. A guided tour to approximate string
matching. ACM Computing Surveys, 33(1):31–88, 2001.

[7] G. Navarro and R. Baeza-Yatesa. New and faster filters
for multiple approximate string matching. Random
Structures and Algorithms, 20(1):23–49, 2002.

[8] C. Rick. A New Flexible Algorithm for the Longest
Common Subsequence Problem. Technical report,
University of Bonn, Computer Science Department IV,
1994.

