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ABSTRACT

In this paper, we propose a versatile disambiguation ap-
proach which can be used to make explicit the meaning of
structure based information such as XML schemas, XML
document structures, web directories, and ontologies. It can
be of support to the semantic-awareness of a wide range of
applications, from schema matching and query rewriting to
peer data management systems, from XML data clustering
to ontology-based automatic annotation of web pages and
query expansion. The effectiveness of the achieved results
has been experimentally proved and is founded both on a
flexible exploitation of the structure context, whose extrac-
tion can be tailored on the specific application needs, and
of the information provided by commonly available thesauri
such as WordNet.

Categories and Subject Descriptors:
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing — linguistic processing

General Terms: Algorithms.

Keywords: word sense disambiguation, semantic web, struc-
ture based information.

1. INTRODUCTION

In recent years, knowledge based approaches, i.e. ap-
proaches which exploit the semantics of the information they
access, are rapidly acquiring more and more importance in
a wide range of application contexts. We refer to “hot”
research topics, like schema matching and query rewriting
[9, 15], also in peer data management systems (PDMS) [13],
XML data clustering and classification [19, 20] and ontology-
based annotation of web pages and query expansion [8, 10],
all going in the direction of the Semantic Web “... an exten-
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sion of the current web in which information is given well-
defined meaning, better enabling computers and people to
work in cooperation” [4]. In these contexts, most of the pro-
posed approaches share a common basis: They focus on the
structural properties of the accessed information, which are
represented adopting XML or ontology based data models,
and their effectiveness is heavily dependent on knowing the
right meaning of the employed terminology. For instance,
the graph matching algorithm proposed in [16] converts the
schemas to be matched into directed labelled graphs, as-
sumes that a similarity measure between nodes has been
defined and the matching computation essentially relies on a
mechanism of similarity spreading. Obviously, the more the
similarity measure is able to quantify the semantic closeness
of the node’s labels, the more the obtained mappings are
effective. In the same way, the approach for automatic clas-
sification of XML data proposed in [20] views tags as high-
quality features of XML documents and exploits their mean-
ing in the classification process. Generally speaking, due to
the ambiguity of natural languages, terms describing infor-
mation usually have several meanings and making explicit
the semantics of information goes through the tricky task of
deriving from the context the most appropriate meanings.
For example, Fig. 1 shows the hierarchical representation
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Figure 1: A portion of the eBay® categories.

of a portion of the categories offered by eBay®, one of the
most famous world’s online marketplaces (nodes are univo-
cally identified by their pre-order values). It contains many
polysemous words, from string to batteries and memory,
to which commonly available vocabularies associates several
meanings. The information given by the surrounding nodes
allows us to state, for instance, that string are “stringed



instruments that are played with a bow” and batteries are
electronic devices and not a group of guns or whatever else.

For most of the knowledge based approaches present in
the literature, the problem of making explicit the meanings
of words is usually demanded to human intervention and till
now machine-based solutions have only been marginally ad-
dressed in the context of structure based information. On
the other hand, in the most cutting edge semantic-aware ap-
plication contexts the role of humans is limited to that of
user while, when some kind of human intervention is pro-
vided for, unassisted semantic annotation is a quite tedious
task.

In this paper, we propose a generic approach for the dis-
ambiguation of graph-like structured information, mainly fo-
cusing on trees. It can be used to make explicit the meaning
of a wide range of structure based information, including
XML schemas, the structures of XML documents, web di-
rectories, and ontologies. Starting from the lesson learnt
in the word sense disambiguation (wsd) field [11], where
several solutions have been proposed for free text, we have
conceived a versatile approach which tries to disambiguate
the terms occurring in the nodes’ labels by analysing their
context and by using an external knowledge source. More
precisely, starting from a given node, we support several
ways of navigating the graph in order to extract the con-
text which can thus be tailored on the specific application
needs. Moreover, the disambiguation method does not de-
pend on training data or extensions, which are not always
available. For instance, in a PDMS, peers not necessarily
store actual data. We follow instead a different approach:
The exploitation of the information provided by commonly
available thesauri such as WordNet [17]. In particular, dis-
ambiguation is founded on the hypernymy/hyponymy hi-
erarchy, as suggested by most of the classic wsd studies,
and the sense contexts, extracted from the thesaurus, can
be compared against the graph context to refine the results.
The outcome of the overall process is a ranking of the plausi-
ble senses for each term. In this way, we are able to support
both the assisted annotation and the completely automatic
one whenever the top sense is selected. The disambiguation
approach has been implemented and extensively evaluated
through tests performed on three groups of trees differing in
the level of specificity and polysemy. Experimental results
show the good effectiveness of the proposed approach, also
in particularly involved settings.

The rest of the paper is organized as follows: Section 2
presents an overview of our disambiguation approach, while
the proper disambiguation algorithm is presented in Section
3. Experimental evaluation is provided in Section 4 and
related works in Section 5. Finally, Section 6 concludes the
paper.

2. OVERVIEW OF THE APPROACH

In this section we present the functional architecture of
a generic tree disambiguation service (see Fig. 2) and in-
troduce relevant terminology. Being trees particular kinds
of graphs, without loss of soundness, in the following we
will use indifferently the terms tree and graph. Indeed, at
the end of the present section, we will show that the service
can be straightforwardly extended to graphs. We emphasize
that no extension or training data is required for our disam-
biguation purposes as they are not always available. The
only external source is a thesaurus associating each word

with the concepts or senses it is able to express.

The service is able to disambiguate XML schemas, the
structures of XML documents, web directories, and, in gen-
eral, such information descriptions which can be represented
as trees. As a particular case, XML schemas are represented
as trees which make explicit the structural relationships be-
tween the involved elements, thus capturing the element con-
text, and abstract from the complexity of the language syn-
tax. The tree contains a set of nodes whose labels must be
disambiguated and a set of arcs which connect pairs of nodes
and which may as well be labelled (e.g. type, property).
The individuation of the correct sense for each label can be
possible by analysing the context of the involved terms and
by using an external knowledge source. Arcs are particu-
larly important as they connect each label with its context.
Each arc label is associated with two weights between 0 and
1 (default value 1), one for each crossing direction (direct
and inverse). Weights will be used to compute the distance
between two nodes in the graph and the lower the weight of
an arc is the closer two nodes connected by such arc are.

The “terms/senses selection” component in Fig. 2 takes
the label of each node N of the tree, extracts the contained
terms (which can also be more than one as for instance
desktop PC components in Fig. 1) and associates each of
these terms (¢, N)' with a list of senses Senses(t,N) =
[s1,82,...,8k]. In principle, such list is the complete list of
senses provided by the thesaurus but it can also be a shrunk
version suggested either by human or machine experts or as
feedback of a previous disambiguation process.

Each polysemous term (¢, N) is then associated with its
context. The context is first extracted from the tree but
it does not necessarily coincide with the entire tree. In-
deed, different applications require different contexts. For
instance, while disambiguating the term string in the musi-
cal instruments category of eBay®, using categories such
as women’s clothing would be quite misleading. Thus we
support different contexts by means of different crossing set-
tings. By default, the nodes reachable by the term’s node
N through any arc belong to the term’s context. The set
of crossable arc labels and the corresponding crossing direc-
tions is shrinkable, that is it is possible to specify which kinds
of arcs are crossable, in which direction and the maximum
number of crossings (distance from the term’s node). More-
over, as we deal with trees, we also provide the possibility
of including the siblings of the term’s node in the context.
The above options can be freely combined. As a special case,
let us consider trees having no label on the arcs. It actually
represents the conceptual structure of the most common ap-
plication contexts such as web directories, XML documents,
and XML schemas. When the only crossing direction is the
direct one, the context is defined by the descendants or sub-
tree of the term’s node. Conversely, it is represented by the
ancestors. For instance, for the eBay example, one of the
best crossing settings is to include ancestors, descendants,
and siblings whereas the whole structure would be useful for
structures dealing with more “contextualized” topics such as
book descriptions.

Given a crossing setting, the “graph context extraction”
component in Fig. 2 contextualizes each polysemous term
(t, N) by extracting its graph context Gcontext(t, N) from

'Notice that the same term could be included more than
once and that the disambiguation is strictly dependent on
the node each instance belongs to.
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Figure 2: A generic graph disambiguation service.

the set of terms belonging to the reachable nodes. Not all
nodes contribute with the same weight to the disambigua-
tion of a term. In principle, the more one node is close to the
term’s node and is connected by arcs with low weights the
more it influences the term disambiguation. For this reason,
we associate each reachable node N. in the context with
a weight weight(N.) computed as follows. Given the path
from the node N. to the term’s node N, we count the num-
ber of instances corresponding to each pattern specified in
the crossing setting (i.e. arc label and arc crossing direction)
and we define the distance d between N and N, as the sum
of the product of the weights associated to each pattern and
the corresponding number of instances. Then, weight(N.)
is computed by applying a gaussian distance decay function
defined on d:
42
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Thus each element of the graph context is a triple ((tc, Nc),
Senses(te, Ne), weight(N.)) defined from each term t. be-
longing to each reachable node N.. For instance, assume
that in the eBay example the context is made up of the
siblings and ancestors, that the weight of the parent/child
arcs is 1 in the direct direction and 0.5 in the opposite
one, and that the maximum number of crossings is 2. The
graph context of the term (mouse,7) is made up of the
terms (computers, 2), (desktop, 3), (PC, 3), (components, 3),
(memory, 4), (speaker,5), and (fan,6). The distance be-
tween node 7 and nodes 2, 3, 4 (5 and 6) are 1 (i.e. 2 arcs
crossed in the opposite direction with weight 0.5), 0.5 (i.e.
1 arc crossed in the opposite direction with weight 0.5), and
1.5 (i.e. 1 arc crossed in the opposite direction with weight
0.5 and 1 arc crossed in the direct direction with weight 1),
respectively. Then, weight(2) = 0.91, weight(3) = 0.95,
and weight(4) = weight(5) = weight(6) = 0.8.

The context of each term (¢, N) can be expanded by the
contexts Scontext(s) of each sense s in Senses(t, N). It is
particularly useful when the graph context provides too little
information. In particular for each sense we consider the
definitions, the examples and any other explanation of the
sense provided by the thesaurus. As most of the semantics is
carried by noun words [11], the “context expansion” module
in Fig. 2 defines Scontext(s) as the set of nouns contained
in the sense explanation.

Finally, each term (¢, N) with its senses Senses(t,N) is

weight(N:) =2 -

disambiguated by using the previously extracted context.
The proper disambiguation process is the subject of the fol-
lowing Section. The result is a ranked version of Senses(t, N)
where each sense s € Senses(t, N) is associated with a con-
fidence ¢(s) in choosing s as a sense of (¢, N).

The overall approach is quite versatile. It supports sev-
eral disambiguation needs by means of parameters which
can be freely combined, from the weights to the graph con-
text. Moreover, the ranking approach has been conceived in
order to support two types of graph disambiguation services:
The assisted and the completely automatic one. In the for-
mer case, the disambiguation task is committed to a human
expert and the disambiguation service assists him/her by
providing useful suggestions. In the latter case, there is no
human intervention and the selected sense can be the top
one. Moreover, the above approach can be straightforwardly
applied also to graphs. Indeed, only the context extraction
phase accesses the submitted structure whereas the actual
disambiguation algorithm is completely independent from it.
The only problem is in the weight computation where more
than one path can connect a pair of nodes. In this case, the
one with the lower distance could be selected. In this way,
we would be able to disambiguate ontologies written in dif-
ferent languages such as OWL and RDF where arc labels are
quite frequent (e.g. in RDF arcs can be of subClass0f type
or range type or many other types). However, at present,
trees are our main focus of interest and, in particular, trees
having no label on the arcs which have been subject of our
tests, while we plan to deal with general graphs in the future.

3. THE DISAMBIGUATION ALGORITHM

The algorithm for disambiguation we devised follows a
relational information and knowledge-driven approach. In-
deed, the context is not merely considered as a bag of words
but other information such as their distance from the poly-
semous term to be disambiguated and semantic relations are
also extracted. Moreover we use additional information pro-
vided by thesauri: The hypernymy/hyponymy relationships
among senses and the sense explanations and frequencies of
use. In particular, for the disambiguation algorithm we used
WordNet [17] which is a fairly comprehensive common-sense
thesaurus.

The algorithm is shown in Fig. 3. It takes in input a
term (¢, N) to be disambiguated and produces a vector ¢ of
confidences in choosing each of the senses in Senses(t, N).



algorithm Disambiguate(t, N)
//graph context contribution

(01) ¢g = [0,...,0]
N——

# senses in Senses(t.,N)
(02) norm =0
(03) for each (tc, Ne) in Gcontext(t, N)
(04) o= ¢c + weight(Nc) * TermCorr(t, tc, norm)
(05) norm = norm * weight(N.)
(06) ¢dpg=dg/norm
//expanded context contribution
(07) for ¢ from 1 to the number of senses in Senses(t,N)
(08) if expanded context
(09) ¢gi]= ContextCorr(Gceontext(t, N), Scontext(s;))
(10) oy [i]=decay(s;)
(11) ¢=a(y* ¢ +e* ¢p) + B*du

Figure 3: The disambiguation algorithm

In particular, given Senses(t,N) = [s1,82,...,8k], ¢ Is a
vector of k values and ¢[i] is the confidence in choosing s;
as sense of (¢, N). The obtained confidence vector tunes two
contributions (line 11): That of the context, whose weight
is expressed by the constant a and which is subdivided in
the graph context (confidence vector ¢a, weight v) and the
expanded context (confidence vector ¢ i, weight €), y+¢ = 1,
and that of the frequency of sense use in English language
(confidence vector ¢y) with weight 8, a + 3 = 1.2

The terms surrounding a given one provide a good infor-
mational context and good hints about what sense to choose
for it. The contribution of the graph context is computed
from step 1 to step 6. In particular, ¢ is the sum of the
values measuring the level of semantic correlation between
the polysemous term t and the ones in the graph context
Geontext(t, N) (step 4). The contribution of each context
term (¢c, N¢) is weighted by the relative position in the graph
of the t.’s node, N¢, w.r.t. N (i.e. weight(N.)). Finally in
step 6 the whole vector ¢¢ is divided by the norm value in
order to obtain normalized confidences.

function TermCorr(t,tc, norm)

(1) c(t,te) is the minimum common hypernymy of ¢ and t.
(2 ¢C:[0770]

(3) for i from 1 to the number of senses in Senses(t,N)
(4) if c(t,tc) is ancestor of s;

&) dchjmsim(h o)

(8) norm=norm + sim(t, tc)

(7) return ¢c

Figure 4: The TermCorr() function

The basis of function TermCorr() (see Fig. 4) derives
from the one in [18]. As in [18], the confidence in choosing
one of the senses associated with each term is directly pro-
portional to the semantic similarities between that term and
each term in the context; the intuition behind the similarity
is that the more similar two terms are, the more informa-
tive will be the most specific concept that subsumes them
both. However, our approach differs in the semantic sim-
ilarity measure sim(t,t.) as it does not rely on a training
phase on large pre-classified corpora but exploits the hyper-
nymy hierarchy of the thesaurus. In this context, one of
the most promising measures is the Leacock-Chodorow [12],

2 All operations on the vectors are the usually defined ones.

which has been reviewed in the following way:

sim(t t.) = {—lnle’;(,—tH’tC) if 3a c.ommon hypernymy
0 otherwise

(1)
where len(t,t.) is the minimum among the number of links
connecting each sense in Senses(t, N) and each sense in
Senses(tc, Nc) and H is the height of the hypernymy hi-
erarchy (in WordNet it is 16). Moreover, we define the min-
imum common hypernym c(¢,t.) of ¢ and t. as the sense
which is the most specific (lowest in the hierarchy) of the
hypernyms common to the two senses (i.e. that crossed in
the computation of len(t,t.)). For instance, in WordNet the
minimum path length between the terms “cat” and “mouse”
is 5, since the senses of such nouns that join most rapidly
are “cat (animal)” and “mouse (animal)” and the minimum
common hypernym is “placental mammal”. Obviously these
two values are not computed within the function but once
for each pair of the involved terms. Eq. 1 is decreasing as
one moves higher in the taxonomy thus guaranteeing that
“more abstract” is synonymous of “less informative”. There-
fore, function TermCorr() increases the confidence of such
senses in Senses(t, N) which are descendants of the min-
imum common hypernym (lines 3-4) and the increment is
proportional to how informative the minimum common hy-
pernym is (line 5). At the end of the process (Fig. 3, line 6),
the value assigned in ¢¢ to each sense is then the proportion
of support it receives, out of the support possible which is
kept updated by function TermCorr() (line 6) and in the
main algorithm (Fig. 3, line 5).

function ContextCorr([ti,..
1) éc = [0,...,0]

(2) for ¢ from 1 to n

(&) or =10,...,0]

~7tn}7[tiv~~~7tﬁn})

(4) norm =0

(5) for j from 1 tom

(6) dr= o1 + TermCorr(ti,t;T,norm)
n oclil=max (1 /norm)

(8) return mean(¢pc)

Figure 5: The ContextCorr() function

Beside the contribution of the graph context, also the ex-
panded context can be exploited in the disambiguation pro-
cess (Fig. 3, lines 7-9). In this case, the main objective
is to quantify the semantic correlation between the context
Gceontext(t, N) of the polysemous term (¢,N) and the ex-
planation of each sense s in Senses(t, N) represented by
Scontext(s). In particular, the confidence in choosing s is
proportional to the computed similarity value (Fig. 3, line
9). The pseudocode of function ContextCorr() is shown
in Fig. 5. It essentially computes the semantic similarity
between each term t¢; in the graph context and the terms
in the sense context Scontext(s) (lines 3-7) by calling the
TermCorr() function for each term t; in Scontext(s) (line
6) and then by computing the maximum of the obtained
confidence vector ¢r. The returned value (line 8) is the
mean of the similarity values computed for the terms in
Geontext(t,N).

The last contribution is that of function decay(), exploit-
ing the frequency of use of the senses in English language
(Fig. 3, line 9). In particular, WordNet orders its list of
senses W N Senses(t) of each term ¢ on the basis of the fre-



quency of use (i.e. the first is the most common sense, etc.).
We increment the confidence in choosing each sense s in
Senses(t, N) in a way which is inversely proportional to its
position, pos(s), in such ordered list:

B pos(s;) — 1
p|WNSenses(t)|

where 0 < p < 1 is a parameter we usually set at 0.8 and
|W N Senses(t)| is the cardinality of W N Senses(t). In this
way, we quantify the frequency of the senses where the first
sense has no decay and the last sense has a decay of 1:5.
Such an adjustment attempts to emulate the common sense
of a human in choosing the right meaning of a noun when
the context gives little help.

As a final remark, notice that for the sake of simplicity
of presentation, algorithm Disambiguate() takes one term
at a time. However, for efficiency reasons, in the actual
implementation the sim() computation is performed only
once for a given pair of terms (also swapped as sim() is a
symmetric measure).

decay(si;) =1

4. EXPERIMENTAL EVALUATION

In this section we present the results of an actual imple-
mentation of our disambiguation approach.

4.1 Experimental setting

Tests were conceived in order to show the behavior of our
disambiguation approach in different scenarios. In particu-
lar we tested 3 groups of trees characterized by 2 dimensions
of interest. The first dimension, specificity, indicates how
much a tree is contextualized in a particular scope; trees
with low specificity can be used to describe heterogeneous
concepts, such as a web directory, whereas trees with high
specificity are used to represent specialized fields such as
data about movies and their features and staff. The second
dimension, polysemy, indicates how much the terms are am-
biguous. Trees with high polysemy contain terms with very
different meanings: For instance, rock and track whose
meanings radically change in different contexts. On the
other hand, trees with low polysemy contain mostly terms
whose senses are characterized by subtle shades of mean-
ing, such as title. For each feasible combination of these
properties we formed a group by selecting the three most
representative trees. Groupl is characterized by a low speci-
ficity and a polysemy which increases along with the level
of the tree; it is the case of web directories in which we usu-
ally find very different categories under the same root and
a low polysemy at low levels and high polysemy at the leaf
level. The trees we selected for Groupl are a small portion
of Google™s and Yahoo®’s web directories and of eBay®’s
catalog. Group?2 is characterized by a high specificity and
a high polysemy; we chose structures extracted from XML
documents of Shakespeare’s plays, Internet Movie Database
(IMDb®, www.imdb.org) and a possible On Line Music Shop
(OLMS). Finally, Group3 is characterized by a high speci-
ficity and a low polysemy and contains representative XML
schemas from the DBLP and SIGMOD Record scientific
digital libraries and the Dublin Core Metadata Initiative
(DCMI®, dublincore.org) specifications. Low specificity
and high polysemy are hardly compatible, therefore we will
not consider this one as a feasible combination.

Tab. 1 shows the features of each tree involved in our
experimental evaluation. From left to right: The number of

Table 1: Features of the tested trees

# terms # senses Perc. Sense
mean max correct | simil.
eBay 16 3.062 8 0.327 3.321
Google 23 3.522 11 0.296 3.201
Yahoo 15 2.733 6 0.366 3.372
Groupl 18.000 3.106 8.333 0.330 3.298
IMDb 41 3.854 10 0.278 2.991
OLMS 21 6.286 17 0.159 2.31
Shakes. 15 8 29 0.133 2.152
Group2 25.667 6.047  18.667 0.190 2.484
DBLP 14 5.429 11 0.224 2.6
DCMI 17 5 10 0.235 2.983
Sigmod 18 6.444 13 0.198 2.901
Group3 16.333 5.624 11.333 0.219 2.828

terms, the mean and maximum number of terms’ senses, the
percentage of correct senses between all the possible senses
and the average similarities among the senses of each given
term in the tree (computed by using a variant of Eg. 1).
Notice that our trees are composed by 15-40 terms. Even
though they are not particularly big, their composition al-
lows us to generate a wide and significant variety of graph
contexts. The other features are instead important in or-
der to understand the difficulty of the disambiguation task:
For instance, higher is the number of senses of the involved
terms more difficult will be their disambiguation. The mean
number of senses of Group2 and Group3 is almost double
than that of Groupl, thus we expect their disambiguation
to be harder. This is confirmed by the percentage of correct
senses between all the possible senses, which can be consid-
ered an even more significant “ease factor” and is higher in
Groupl. The last feature partially expresses how the trees
are positioned w.r.t. the polysemy dimension: the higher is
the average of the sense similarity the lower is the polysemy
and the different senses have a closer meaning. This is true
in particular for Groupl and Group3 trees, confirming the
initial hypothesis.

4.2 Effectiveness evaluation

In our experiments we evaluated the performances of our
disambiguation algorithm mainly in terms of effectiveness.
Efficiency evaluation is not crucial for a disambiguation ap-
proach and is beyond the goal of this article so it will not be
deepened (in any case, the disambiguation process for the
analysed trees required at most few seconds). Traditionally,
wsd algorithms are evaluated in terms of precision and recall
figures [11]. In order to produce a deeper analysis not only
of the quality of the results but also of its possible motiva-
tions w.r.t. the different tree scenarios, we considered the
precision figure along with a number of newly introduced
indicators. Recall parameter is not considered because its
computation is usually based on frequent repetitions of the
same terms in different documents, and we are not interested
in evaluating the wsd quality from a single term perspective.

The disambiguation algorithm has first been tested on the
entire collection of trees using the default graph context: all
the terms in the tree. Fig. 6 shows the precision results
for the disambiguation of the three groups. Three contri-
butions are presented: The graph context one (Graph), the
expanded context one (Exp) and the combined one (Comb).
In general, precision P is the mean of the number of terms
correctly disambiguated divided by the number of terms in
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Figure 6: Mean precision levels for the three groups

the trees of each group. Since we have at our disposal com-
plete ranking results, we compute precision P(M) at differ-
ent levels of quality, by considering the results up to the
first M ranks: For instance, P(1) will be the percentage of
terms in which the correct senses are at the top position of
the ranking. Combination of graph context and expanded
context contributions produces good P(1) precision levels of
90% and of over 83% for groups Groupl and Group2, respec-
tively. Precision results for Group3 are lower (nearly 70%),
but we have to consider the large number and higher simi-
larity between the senses of the involved terms; even in this
difficult settings, the results are quite encouraging, particu-
larly if we notice that P(2) is above 88%. As to the effective-
ness of the context expansion, notice that its contribution
alone (Exp) is generally very near to the graph context one,
particularly in the complex Group3 setting, meaning a good
efficacy of this approach too; further, in all the three cases
the combination of the two contributions (Comb) produces
better results than each of the contributions alone. This is
achieved by using optimal values for the a, v (0.7) 3, and €
(0.3) weights, as obtained from a series of exploratory tests.

The next step was to evaluate the different behaviors of
the trees disambiguation by varying the composition of their
terms’ context. We tested an extensive range of combina-
tions for all the available trees, with “selected” contexts in-
cluding only ancestor, descendant and/or sibling terms, and
discovered two main behaviors: Groupl trees respond well to
a more careful context selection, while Group2 and Group3
show an opposite trend. Fig. 7 shows two illustrative com-
parisons between complete and selected contexts for Yahoo
tree (Groupl, Fig. 7-a) and IMDb tree (Group2, Fig. 7-b).
Notice that, in the first case, the combined precision P(1)
raises from 86% to a perfect 100% for a selected setting in-
volving only ancestors, descendants and siblings. This is due
to the fact that Groupl concepts are very heterogeneous and
including in the context only directly related terms reduces
the disambiguation “noise” produced by completely uncor-
related ones. For instance, when the complete Yahoo tree is
used to disambiguate the term hygiene in the health cate-
gory, the top sense is that related to the health science as the
process is wrongly influenced by terms like neurology and
cardiology contained in the medicine category. Instead,
when the tree terms are specific and more contextualized,
such as in the other two groups, the result is the opposite:
Notice the IMDb combined precision dropping from nearly
88% to 80% when only ancestors and descendant terms are
kept (Fig. 7-b).

Table 2: Delta values of the selected senses

Delta to last (rank) Delta (conf)
rankl rank2 rank3 | to foll. from top

eBay 2.154 0.667 - 0.307 -0.043
Google 2.5 2 - 0.244 -0.003
Yahoo 1.733 - - 0.184 0

Groupl | 2.129 1.333 - 0.245 -0.015
IMDb 2.444 2.667 - 0.14 -0.017
OLMS 4.118 10.5 - 0.171 -0.02
Shakes. | 9.125 2.2 - 0.171 -0.042
Group2 | 5.229 5.122 - 0.161 -0.026
DBLP 3.4 6.667 - 0.142 -0.039
DCMI 3.273 4 5 0.125 -0.039
Sigmod 5.5 4.375 - 0.168 -0.035
Group3 | 4.058 5.014 5 0.145 -0.038

Precision figures are the fundamental way to evaluate a
wsd approach, however, in our case, we wanted to analyze
the results more in depth and from different perspectives.
For instance, precision P(1) might be high thanks to the ef-
fectiveness of the approach but also for the possibly small
number of senses of the involved terms (think of terms with
just one sense). In order to deepen our analysis, we com-
puted additional “delta” parameters (see Tab. 2): The left
part of the table shows delta values between rank positions,
while the right part shows delta values between confidences.
Delta rank values express the mean difference between the
position in the ranking of the correct sense and that of the
last one; we computed them when the right senses appear in
the first (rankl in table), second (rank2) and third (rank3)
position. For a given rank, we indicate by a ‘-’ the situa-
tion where there are no correct senses with that rank. In
general, the higher the “delta to last” rank value is, the
harder the disambiguation task should be. At a first glance,
Group?2 and Group3 confirm their inherent complexity w.r.t.
Groupl, where rankl delta values are nearly double. Also
notice the very high rankl delta of some trees, such as the
Shakespeare one, meaning that our approach correctly dis-
ambiguates also terms with very high number of senses. Fur-
ther, we wanted to analyze the actual confidence values and,
in particular: How much the right senses’ confidences are far
from the incorrect ones, i.e. how much the algorithm is con-
fident in its choices (delta confidence to the followings, first
column of the right part of the table), and, when the choice
is not right, how much the correct sense confidence is far
from the chosen one (delta confidence from the top). We
see that the “to the followings” values are sufficiently high
(from 14% of Group3 to over 24% of Groupl), while the
“from the top” ones are nearly null, meaning very few and
small mistakes. Notice that the wsd choices performed on
Groupl, which gave the best results in terms of precision,
are also the most “reliable” ones, as we expected.

In Tab. 2 we showed aggregate delta values for each group,
however we also found interesting to investigate the visual
trend of the delta confidences of the terms of a tree. Fig. 8
shows the double histogram composed by the delta to the fol-
lowings (top part) and the delta from the top (bottom part)
values, where the horizontal axis represents the 21 terms of
the On Line Music Shop tree. Notice that for two terms no
contributions are present: This is due to the fact that these
terms have only one available sense and, thus, their disam-
biguation is not relevant. Further, the graph shows that,
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(a) Typical Groupl behavior (Yahoo tree)
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Complete context

(b) Typical Group2 behavior (IMDb tree)

Figure 7: Mean precision levels comparison between complete context (whole tree) and a selected context
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Figure 8: Confidence delta values for OLMS

when the upper bars are not particularly high (low confi-
dence), the bottom bars are not null (wrong disambiguation
choices), but only in a very limited number of cases. In most
cases, the upper bars are evidence of good disambiguation
confidence and reliability, with peaks of over 40%.

Up to now we have not considered the contribution of
the terms/senses’ feedback to the overall effectiveness of the
results, in particular in the disambiguation of the most am-
biguous terms in the tree. For illustration, suggesting the
correct meaning of the term volume in the DBLP tree as a
book helps the algorithm in choosing the right meaning for
number as a periodic publication. Moreover, suggesting the
correct meaning of the term line (part of character’s speech)
in the Shakespeare tree produces better disambiguation re-
sults, for instance for the speaker term, where the position
of the right sense passes from second to first in the ranking.
Notice that, in this case, and in many others, the feedback
on the term merely confirms the top sense in the ranking (i.e.
our algorithm is able to correctly disambiguate it); nonethe-
less, this has a positive effect on the disambiguation of the
near terms since the “noise” produced by the wrong senses
is eliminated. The flexibility of our approach allows also to
benefit from a completely automatic feedback, where the re-
sults of a given run are refined by automatically disabling
the contributions of all but the top X senses in the following
runs. We can generally choose a very low X value, such as 2
or 3, since the right sense is typically occupying the very top
positions in the ranking. For instance, by choosing X = 2
in the SIGMOD tree, the results of the second run show a
precision increment of almost 17%, and similar results are

generally obtainable on all the considered trees.

5. RELATED WORK

Before discussing the few approaches proposed for the
“structural” disambiguation problem, we will first briefly
review our disambiguation approach in the more “classic”
and well studied field of wsd for free text. The necessity of
looking at the context of a word in order to correctly disam-
biguate it is universally accepted, nonetheless two different
approaches exist: The bag of words approach, where the
context is merely a set of words next to the term to dis-
ambiguate, and the relational information approach, which
extends the former with other information such as their
distance or relation with the involved word. The disam-
biguation algorithm developed in this paper adopts the re-
lational information approach which is more complex but
generally performs much better. In the literature, a fur-
ther distinction is based on the kind of information source
used to assign a sense to each word occurrence [11]. Our
disambiguation method is a knowledge-driven method as it
combines the context of the word to be disambiguated with
additional information extracted from an external knowl-
edge source, such as electronically oriented dictionaries and
thesauri. Such approach often benefits from a general appli-
cability and is able to achieve good effectiveness even when
it is not restricted to specific domains. WordNet is, with
no doubt, the most used external knowledge source [6] and
its hypernym hierarchies constitute a very solid foundation
on which to build effective relatedness and similarity mea-
sures, the most common of which are the path based ones
[12]. Further, the descriptions and glosses provided for each
term can deliver additional ways to perform or refine the
disambiguation: The gloss overlap approach [3] is one of
them. Among the alternative approaches, the most com-
mon one is the corpus-based or statistic approach where
the context of a word is combined with previously disam-
biguated instances of such word, extracted from annotated
corpora [1, 2]. Recently, new methods relying on the entire
web textual data, and in particular on the page count statis-
tics gathered by search engines like Google [7, 8] have also
been proposed. However, generally speaking, the problem of
such approaches is that they are extremely data hungry and
require extensive training, huge textual corpora, which are
not always available, and/or a very large quantity of manual
work to produce the sense-annotated corpora they rely on.



This problem prevents their use in the application contexts
we refer to, as even “raw” data are not always available (e.g.
in a PDMS, peers not necessarily store actual data).

Structural disambiguation is acknowledged as a very real
and frequent problem for many semantic-aware applications.
However, to our best knowledge, up to now it has only been
partially considered in two contexts, schema matching and
the XML data clustering, and few actual structural dis-
ambiguation approaches have recently been presented. In
many schema matching approaches, the semantic closeness
between nodes relies on syntactic approaches, such as sim-
ple string matching possibly considering its synonyms (e.g.
[16, 14]). Also, a good number of statistical wsd approaches
have been proposed in the matching context (e.g. [13]).
However, as we already outlined, they rely on additional
data which may not always be available. As to the proper
structural disambiguation approaches, in [20] the authors
propose a technique for XML data clustering, where disam-
biguation is performed on the documents’ tag names. The
local context of a tag is captured as a bag of words contain-
ing the tag name itself, the textual content of the element
and the text of the subordinate elements and then it is en-
larged by including related words retrieved with WordNet.
This context is then compared to the ones associated to the
different WordNet senses of the term to be disambiguated by
means of standard vector model techniques. In a similar sce-
nario, the method proposed in [19] performs disambiguation
by applying a shortest path algorithm on a weighted graph
constructed on the terms in the path from each node to the
root and on their related WordNet terms. For the graph con-
struction, WordNet relations are navigated just one level. In
a schema matching application, [5] presents a node disam-
biguation technique exploiting the hierarchical structure of
a schema tree together with WordNet hierarchies. In order
for this approach to be fully effective, the schema relations
have to coincide, at least partially, with the WordNet ones,
and this appears as a quite strong requirement.

Generalizing, our approach differs from the existing struc-
tural disambiguation approaches as it has not been con-
ceived in a particular scenario but it is versatile enough to be
applicable to different semantic-aware application contexts.
It fully exploits the potentialities of the context of a node
in a graph structure and its extraction is flexible enough to
include relational information between the nodes and differ-
ent kinds of relationships, such as ancestors, descendants or
siblings. Further, we fully exploit WordNet hierarchies, and
in particular the hypernym ones which are the most used
for building effective relatedness measures between terms in
free text wsd.

6. CONCLUSIONS

Structural disambiguation is acknowledged as a very real
and frequent problem for many semantic-aware applications.
As to our knowledge, this is the first work which proposes
a versatile approach for the disambiguation of graph-like
structured information. Our main aim was to provide a sig-
nificant improvement to the semantic-awareness of a wide
range of knowledge based applications. The experimental
results, showing the very good effectiveness of the approach,
are quite encouraging and induce us to continue in this direc-
tion. In our future work, we will deeply analyse the ontology
disambiguation problem, also by evaluating the performance
on generic graphs, and the feedback process.

7. REFERENCES

[1] E. Amitay, R. Nelken, W. Niblack, R. Sivan, and
A. Soffer. Multi-resolution disambiguation of term
occurrences. In Proc. of CIKM, 2003.

[2] J. Artiles, A. Penas, and F. Verdejo. Word Sense
Disambiguation based on term to term similarity in a
context space. In Proc. of Senseval-3, 2004.

[3] S. Banerjee and T. Pedersen. Extended gloss overlaps
as a measure of semantic relatedness. In Proc. of
IJCAI 2003.

[4] T. Berners-Lee, J. Hendler, and O. Lassila. The
Semantic Web. Scientific American, 284(5), 2001.

[5] P. Bouquet, L. Serafini, and S. Zanobini. Semantic
coordination: a new approach and an application. In
Proc. of ISWC, 2003.

[6] E. Budanitsky and G. Hirst. Semantic distance in
wordnet. In Proc. of NAACL Workshop on WordNet
and Other Lexical Resources, 2001.

[7] R. Cilibrasi and P. Vitanyi. Automatic meaning
discovery using Google. Technical report, University of
Amsterdam, 2004.

[8] P. Cimiano, S. Handschuh, and S. Staab. Towards the
self-annotating web. In Proc. of WWW Conf., 2004.

[9] H. Do, S. Melnik, and E. Rahm. Comparison of
schema matching evaluations. In Proc. of WebDB
Workshop, 2002.

[10] M. Ehrig and A. Maedche. Ontology-focused crawling
of web documents. In Proc. of SAC, 2003.

[11] N. Ide and J. Veronis. Introduction to the Special
Issue on Word Sense Disambiguation: The State of
the Art. Computational Linguistics, 24(1), 1998.

[12] C. Leacock and M. Chodorow. Combining local
context and WordNet similarity for word sense
identification. In C. Fellbaum, editor, WordNet: An
electronic lexical database. MIT Press, 1998.

[13] J. Madhavan, P. A. Bernstein, A. Doan, and A. Y.
Halevy. Corpus-based schema matching. In Proc. of
ICDE, 2005.

[14] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic
Schema Matching with Cupid. In Proc. of VLDB
Conf., 2001.

[15] F. Mandreoli, R. Martoglia, and P. Tiberio.
Approximate Query Answering for a Heterogeneous
XML Document Base. In Proc. of WISE Conf., 2004.

[16] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
Flooding: A Versatile Graph Matching Algorithm and
ist Application to Schema Matching. In Proc. of
ICDE, 2002.

[17] G. A. Miller. WordNet: A Lexical Database for
English. CACM, 38(11), 1995.

[18] P. Resnik. Disambiguating Noun Groupings with
Respect to WordNet Senses. In Proc. of Workshop on
Very Large Corpora, 1995.

[19] A. Tagarelli and S. Greco. Clustering Transactional
XML Data with Semantically-Enriched Content and
Structural Features. In Proc. of WISE Conf., 2004.

[20] M. Theobald, R. Schenkel, and G. Weikum.
Exploiting Structure, Annotation, and Ontological
Knowledge for Automatic Classification of XML Data.
In Proc. of WebDB Workshop, 2003.



