
Building a PDMS Infrastructure
for XML Data Sharing with SUNRISE ∗

Federica Mandreoli, Riccardo Martoglia, Simona Sassatelli and Giorgio Villani
DII - University of Modena and Reggio Emilia, Italy

{federica.mandreoli, riccardo.martoglia, simona.sassatelli, giorgio.villani}@unimo.it

Wilma Penzo
DEIS - University of Bologna, Italy

wilma.penzo@unibo.it

ABSTRACT
Semantic support for data representation as well as a flexi-
ble machine-readable format have made XML the de facto
standard for Internet applications semantic interoperability.
Its applicability is primarily evident in realities where actors
are heterogeneous data sources which interact each other for
data sharing purposes. This is exactly the scenario envi-
sioned by Peer Data Management Systems (PDMSs), where
autonomous sources (peers) model their local data accord-
ing to a schema, and are connected in a peer-to-peer net-
work by means of pairwise semantic mappings between the
peers’ own schemas. One of the main challenges in such a
semantically heterogeneous environment is concerned with
query processing when dealing with the inherent semantic
approximations occurring in the data.

In this paper we present an instantiation of SUNRISE
(System for Unified Network Routing, Indexing and Seman-
tic Exploration) for XML data sources. SUNRISE is a com-
plete PDMS infrastructure which extends each peer with
functionalities for capturing the semantic approximation orig-
inating from schema heterogeneity and exploiting it for a se-
mantically driven network organization and query routing.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network Management ; E.1 [Data]: Data Struc-
tures—Distributed Data Structures; H.3.3 [Information Stor-
age and Retrieval]: Information Search and Retrieval—
Search Process
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1. MOTIVATION AND RELATED WORK
In recent years, the enormous success of Internet has stressed

the importance of a general agreement on the format for data
exchange. For this purpose, XML proved to be a widely ac-
cepted standard both for its flexible machine-readable form,
and for the semantic support it provides for data representa-
tion. This last feature, in line with the Semantic Web vision
[4], has made XML to be extensively and successfully used
by several applications dealing with semantically rich data.
Its applicability is primarily evident in distributed realities,
where actors are heterogeneous data sources which interact
with each other for data sharing purposes.

This is exactly the scenario envisioned by Peer Data Man-
agement Systems (PDMSs)[9, 23, 2], a recent evolution of
peer-to-peer (P2P) systems towards a more semantics-based
description of peers’ contents and relationships. In a PDMS
peers are autonomous sources which model their local data
according to a schema, and are connected in a peer-to-peer
network by means of pairwise semantic mappings between
the peers’ own schemas. Because of the absence of common
understanding of the vocabulary used at each peer’s schema,
the semantic mappings established between the peers imple-
ment a decentralized schema mediation [9].

One of the main challenges in such a semantically hetero-
geneous environment is concerned with query processing. A
query is routed through the network by means of a sequence
of reformulations, according to the semantic mappings en-
countered in the routing path. As reformulations may lead
to semantic approximations, thus inducing information loss,
for a given peer, the linkage closeness to semantically similar
peers is a crucial issue. This matter has also been evidenced
recently by works on Semantic Overlay Networks (SONs) [1,
6, 8, 12, 24] for P2P systems, where peers with semantically
similar content are clustered together in logical subnetworks.
The main aim of a SON is to improve the efficiency of query
processing by limiting the number of contacts only to rel-
evant peers. Nevertheless, in a more complex environment
like the PDMS one, SON principles substantially improve
the effectiveness of query answering, by reducing the seman-
tic degradation due to the traversal of semantic mappings
towards irrelevant peers [13].



However, the problem of answering queries efficiently is
only partially solved by simply relying on a carefully de-
signed network organization. Indeed, SONs would largely
benefit of a support for query routing, i.e. a mechanism for
selecting a small subset of relevant peers to forward a query
to. This issue has been the subject of several research works
[5, 11, 15], with the aim of cutting off the negative effects
of query flooding techniques which both overwhelm the net-
work with messages, and often return lots of irrelevant re-
sults.

In this paper we present an instantiation of SUNRISE
(System for Unified Network Routing, Indexing and Seman-
tic Exploration) for XML data sources. SUNRISE is a com-
plete PDMS infrastructure which offers peers specific func-
tionalities in the following stages which characterize a PDMS
life:

Network construction. Techniques and index structures
for selecting the best SONs to join to, as well as for
efficiently locating the semantically closest neighbors
to be connected to, are provided for each peer enter-
ing the network. This is achieved thanks to a suite
of protocols and algorithms for managing the update
and evolution of the infrastructure in an incremental
fashion;

Network exploration. Routing algorithms and a specifi-
cally devised indexing mechanism are at peers’ disposal
for a wise query answering which selectively locates the
most relevant peers to be contacted.

The overall process of network management/usage is se-
mantics-driven, in that it is aware of the semantic approxi-
mations originating from the peers’ schemas heterogeneity.
Further, the system is complemented with two nice fea-
tures: 1) a simulation environment able to reproduce the
main characteristics of a PDMS setting without requiring a
real network of peers; 2) a user-friendly GUI providing an
easy-to-use layout of the main functions of the system and
showing its behavior, also in a step-by-step fashion, during
the interaction with the user. Leveraging on our previous
works [20, 15, 16, 13, 17], the main aim of this paper is to
show that it is possible to construct a P2P network for XML
data sharing where peers interact for a semantics-driven ef-
fective and efficient query processing.

In Section 2 we provide an overview of the system work-
ing, by introducing a running example of network organiza-
tion. Section 3 is devoted to the presentation of SUNRISE
architecture through a detailed description of the modules
composing the system. In Section 4 we discuss a series of
experiments we conducted with SUNRISE. Finally, conclu-
sions are drawn in Section 5.

2. THE SUNRISE INFRASTRUCTURE
The SUNRISE infrastructure relies on a PDMS architec-

ture where a collection of autonomous peers model their lo-
cal data through schemas and are pairwise connected through
semantic mappings. SUNRISE supports the creation and
maintenance of a flexible network organization for PDMSs
that clusters together in SONs heterogeneous peers which
are semantically related. Figure 1 shows a sample of net-
work made up by two SONs concerning cinema-related data.
Each peer is represented by the main topics of interest de-
rived from its schema. In case of tree-based structure, like
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Figure 2: Peer’s internal architecture in SUNRISE

XML schemas, they correspond to the abstract elements
which can be obtained by applying a schema summarization
technique like the one proposed in [26]. Some peers of the
network, such as the Internet Movie Database (IMDb, Peer
B) and the web site HolidayInRome (Peer F) are “monothe-
matic”, i.e. they only deal with movies and movie theaters,
respectively. Other peers, instead, are concerned with both
themes, e.g. FindATheater.

Peers react to the events issued to the network by interact-
ing on the basis of a message exchange protocol. Basically
three kinds of events are supported: As to the network con-
struction phase, the NeighborSelection event is devoted to
assist each newly entering peer in the selection of the se-
mantically closest peers as its neighbors while a Connection

event allows the actual connection between peers; as to the
network exploration phase, a Query event is posed at a peer
in order to be answered by the most semantically related
peers in the network. To implement the message exchange
protocol, each peer maintains appropriate data structures
and specific software modules (see Figure 2).

While the SUNRISE architecture has been conceived in
order to be completely independent from the data model
adopted for schema representation and query formulation,
the data model peculiarities are supported by the actual
implementation of these software modules. This paper fo-
cuses on the XML data model in order to provide a PDMS



with an infrastructure for XML data sharing where peers
interact for a semantic-driven effective and efficient query
processing.

In the following, we will show how such modules interact
and access the data structures whereas functionality details
will be given in the next section. In particular, as to the
data structures, besides the already presented XML schema
each peer maintains the Semantic Mappings that provide
the connections with its neighbors. Two index structures are
maintained too: a Semantic Clustering Index (SCI) which
is used in the network construction phase, and a Seman-
tic Routing Index (SRI), which is exploited in the network
exploration phase for query routing purposes.

2.1 Network construction
As to network construction, every time a new peer joins

the PDMS, it first activates the Annotation Module which
makes explicit the semantics of its schema by associating
each schema’s term with the right concept. Then, the peer
chooses its neighbors and a NeighborSelection event is gen-
erated. SUNRISE assists each newly entering peer in the
selection of its neighbors in a two-fold fashion (see Figure
3): First, in a coarse-grained choice of the semantically clos-
est overlay networks; Then, within each overlay network,
in a fine-grained selection of the best neighbors among the
most semantically related peers [13]. Peers are assigned to
one or more SONs on the basis of their own concepts. In
a PDMS, this operation is a really challenging one because
of the lack of a common understanding among the peer’s
local dictionaries. This means that similar or even the same
contents in different peers are not usually described by the
same concepts. Our proposal is to solve such heterogeneity
by clustering together in the same SON nodes with semanti-
cally similar concepts. Semantic similarity is also at the ba-
sis of the approach we propose to guide the selection of the
neighbors within each SON. As a running example for the
network construction phase, in the following we will consider
the network join request of the new entering peer Movies.aol
(Peer N), which we suppose being “monothematic” and will-
ing to find only one peer, its semantically nearest neighbor,
to connect to.

SON selection relies on a“light”and scalable structure, the
Access Point Structure (APS), which maintains summarized
descriptions about the SONs available in the network in or-
der to help the newly entering peers to decide which SONs to
join or whether to form new SONs. Though being conceptu-
ally centralized, the APS can be stored in a distributed man-
ner among different peers and maintains information such as
SONs’ representative concepts which the peers can compare
with the concepts in their own XML schemas. In order to
perform such an operation, a preliminary phase of concepts
extraction from each own XML schema must be executed by
each entering peer aiming at identifying the concepts which
better describe the peer’s main topics of interest. As an
example, Peer N in Figure 1 which, dealing with movies,
extracts from its XML schema the concepts {film, name,

actors, prizes, ...}, is assigned to SON1.
After SON selection, the peer starts to navigate the link

structure within each selected SON from the entry-point
peer associated to the SON. We assist the peer in the se-
lection of the semantically closest peers by providing two
policies: 1) Range-based, where the new peer connects to
all the peers in a given semantic similarity range, and 2)
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Figure 4: Actions performed following a Connection

event

kNN-based, where the k semantically closest peers are cho-
sen. Each peer receiving a (knn or range) NeighborSelec-

tion message activates the SON Management Module which
determines whether it could belong to the selection required
or not and, in the NeighborSelection message forwarding
phase, it exploits its SCI to prune out non-relevant neigh-
bors. Going back to our example, we suppose Peer N wants
to find its best neighbor in SON1. To this end, it executes
a KNN-selection with k = 1 and connects to the peer with
the most similar schema, i.e. Peer B.

Figure 4 shows the actions which are performed when a
Connection event occurs, i.e. every time a new connection
is established in the network. Notice that each connection
is a pairwise operation and consequently, as it is shown in
the figure, basically involves two peers. Each peer receiv-
ing a Connection event (Peer B in the figure) also receives
the annotated XML schema which is used by the Matching
Module to individuate the semantic correspondences with its
schema. Then, the SRI Management Module and the SCI
Management Module add a reference to the new neighbor in
the corresponding index structures.

2.2 Network exploration
In a PDMS a query is posed at a peer and answers can

come from any peer in the PDMS which is connected through
a semantic path of mappings. Broadly speaking, the PDMS
starts from the querying peer and reformulates the query
over its immediate neighbors, then over their immediate
neighbors, and so on [9]. Thus, when a query is forwarded
through a semantic path, it undergoes a multi-step refor-
mulation which may involve a chain of semantic approxi-
mations. Due to the heterogeneity of the schemas, each
reformulation step may lead to some semantic approxima-
tion and, consequently, the returned data may not exactly fit
with the query conditions. SUNRISE avoids query broad-
casting and exploits such approximations for selecting the
direction which is more likely to provide the best results to
a given query [15, 16]. As a reference example, we will con-
sider the request of an IMDb (Peer B) user asking for “the
plot of the movie titled Indiana Jones IV and directed by
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Figure 5: Actions performed following a Query event

Steven Spielberg”.
Figure 5 depicts the actions a peer performs when it re-

ceives a Query event. After the execution of the query on
the local data set and the collection of local results, the
Query Routing Module is activated. In particular, the Rout-
ing Management sub-module analyzes the received query
and accesses the peer’s SRI in order to select the neigh-
bor (P ′ in the figure) rooting the most relevant subnetwork
among the unvisited ones. Neighbor selection is done on the
basis of the policies presented in 3.4. Then, the Query Re-
formulation Module uses the semantic mappings towards P ′

to reformulate the received query Q into Q′. Q′ can now be
sent to P ′ which will manage the Query message it receives
in a similar way.

3. AN XML INSTANTIATION OF SUNRISE
In this section we will show how the modules depicted in

Fig. 2 act to create a P2P network for XML data sharing
and to explore the network for executing XQuery queries.

3.1 Annotation Module
SUNRISE’s Annotation Module overcomes the ambiguity

of natural language schema terms, as it makes explicit the
meanings of the words employed in the peer’s schemas. In-
deed, schemas often contain many polysemous words and
their meanings could be very different one from the others.
Let us examine, for instance, some of the terms in Peer B
XML schema (consider again Figure 1) along with some of
their meanings extracted from WordNet: plot could be “a
secret scheme to do something” (sense 1), “the story that is
told in a movie” (sense 2), or many others, title could be a
“statute title” (sense 1), “the name of a work of art” (sense
2), “the status of being a champion”(sense 3), and seven oth-
ers. In order for the schema matching and, consequently, the
query processing phase to be effective, it is fundamental to
be able to determine the right meaning of the employed ter-
minology. To this end, the annotation module exploits the
novel versatile structural disambiguation approach we pro-
posed in [18, 19] and automatically annotates the schemas
with the most probable senses extracted from WordNet.

The idea behind our annotation approach is to disam-
biguate the terms occurring in the nodes’ labels by analysing
their schema context and by using WordNet as an external
knowledge source. Starting from the original XML schema,
the annotation module first derives a tree structure repre-
senting the underlying conceptual organization. Figure 6-a
depicts a fragment of such structure for both Peer B and
A: The trees abstract from the several complexities of the
XML schema syntax and only represent the fundamental
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Figure 6: A portion of Peer A and Peer B schemas
and some details about their matching process

concepts (nodes) together with their relations (e.g. Title

is an attribute of Movie and, therefore, is represented as its
child).

Then, starting from each given node, several ways of nav-
igating the schema tree are supported in order to extract
their context. In its simplest form, each term’s context con-
tains those terms labeling all the nodes in the tree which are
reachable from the one considered. However, depending on
the schema characteristics, it is possible to limit the context
by excluding distant and, therefore, unrelated and poten-
tially misleading terms. Finally, specifically devised disam-
biguation algorithms make use of the hypernymy/hyponymy
hierarchy, as suggested by most of the classic WSD studies,
in order to determine each term’s most probable meanings
w.r.t. such context. For example, in Peer B’ schema, term
plot has many movie-related terms, such as movie and di-

rector in its context, the resulting confidence in choosing
sense 2 (the right one) will be much higher than, for instance,
sense 1, which is about secret plans. Further, additional in-
formation coming from the thesaurus, such as the nouns
used in the terms definitions and usage examples of each
term’s senses, can be compared against the schema context
so to automatically understand which is the meaning closest
to the one in the schema. For instance, for plot, the most
significant to our context are the nouns from sense 2 exam-
ples, containing terms like movie character. The outcome
of the disambiguation process is a ranking of the plausible
senses for each term.

3.2 Matching Module
The Matching Module is able to automatically generate se-

mantic matches between the current peer’s schema (source)
and a newly connected neighboring peer (target). In particu-
lar, it associates each source concept to a corresponding tar-
get concept according to a score, denoting the degree of se-
mantic similarity between the two concepts. Such similarity
is a number between 0 (no similarity) and 1 (identity). For
instance, considering the two XML schema fragments from
Peer A and B schemas in Figure 6-a: While their structure
and element names are different, they clearly represent sim-
ilar concepts and the correspondences resulting from their
matching are represented by the same number (see Figure
6-c for the final match scores).

Since these matching scores have to be exploited for net-
work organization and network exploration purposes, the



main characteristic we required for our matching module is
the ability to correctly capture the semantic approximation
originating from schema heterogeneity and quantifying it by
means of scores which have to be comparable. Among the
several existing schema matching approaches [7, 3, 14, 10]
we choose to drawn inspiration form the Similarity Flood-
ing algorithm, originally proposed in [21]. Similarity Flood-
ing is a generic graph matching algorithm which uses fixed
point computation to determine corresponding nodes in the
graph; the principle of the algorithm is that the similarity
between two nodes must depend on the similarity between
their adjacent nodes. Our approach goes beyond the Simi-
larity Flooding algorithm by considering both the structure
of the corresponding trees and the semantics of the involved
terms, as extracted by the annotation module.

In particular, in order to identify the “best” matchings,
SUNRISE Matching Module operates according to the fol-
lowing steps (see [20] for an in-depth explanation):

• the involved schemas are first converted into directed
labelled graphs following the RDF specifications 1;

• from the RDF graphs of each pair of schemas a pair-
wise connectivity graph (PCG), involving node pairs,
is constructed [21], and an initial similarity score is
computed for each node pair contained in the PCG.
Similarly to the annotation approach, we follow a lin-
guistic approach in the computation of the similarities
between terms. Specifically, the scores for each pair
of annotated terms (t1, t2) are obtained by computing
their depths in the WN hypernyms hierarchy and the
length of the path connecting them as follows [20]:

2 ∗ depth of the least common ancestor

depth of t1 + depth of t2
;

• such similarities, reflecting the semantics of the single
node pairs, are refined by an iterative fixpoint calcu-
lation [21], which brings the structural information of
the schemas in the computation by propagating the
similarity of the elements to their adjacent nodes;

• finally, a stable marriage filter and a threshold filter are
applied to the resulting network of correspondences.
The stable marriage filter guarantees that, for each
pair of nodes (x, y), no other pair (x′, y′) exists such
that x is more similar to y′ than to y and y′ is more
similar to x than to x′; on the other hand, the thresh-
old filter ensures that very loose (and, thus, potentially
wrong) matches do not appear in the final matches.
For instance, from the graph of Figure 6, the two filters
extract the right correspondences for Peer B’ movie

and title (matches “1” and “2”, respectively), while
the awards node is not assigned to a corresponding
one in Peer A’s schema.

Generally speaking, schema matching is the first step to-
wards mappings that defines how to represent the source
schema’s concepts in terms of the target schema vocabu-
lary [22]. Obviously the quality of mappings influence the
effectiveness of query processing in a PDMS but the tech-
niques we propose for network construction and exploration
are completely independent from the specific format that
semantic mappings may have. Indeed, our main concern is

1http://www.w3.org/RDF/

about the approximation originating from vocabulary het-
erogeneity. For this reason, we consider a simplified scenario
where the outcome of the matching module actually corre-
sponds to the directional, pairwise and one-to-one semantic
mappings each peer stores in its local folder.

3.3 Network Organization Module
The Network Organization Module contains the actions

each peer executes for network creation and it is made up of
two sub-modules: The SCI Management and the SON Man-
agement modules. Notice that the distance used to quantify
the semantic (dis)similarity between concepts is required to
be a metric [13].

3.3.1 SCI Management Module
The SCI Management Module provides each peer with

the functionalities for the creation and management of the
indexing structures used in the neighbors selection process:
The Semantic Clustering Indexs (SCIs). Indeed, in order to
guide a peer joining the network towards its best position in
the selected SONs, each peer maintains a SCI which contains
summarized information about the concepts which can be
reached in each available direction. In particular, for each
SON SONi the peer belongs to and for each neighbor nj ,
the SCI represents the set of SONi’s concepts which are
reachable in nj ’s subnetwork through a clustroid concept
and a radius such that all such concepts are within the radius
from the clustroid. The SCI Management Module assists
each peer in creating its SCI when entering the network
implementing a specifically devised protocol whose details
are given in [13]. The same protocol regulates the actions
which are executed in order to maintain the SCIs updated
whenever the network changes.

3.3.2 SON Management Module
Each peer receiving a (knn or range) NeighborSelection

message activates the SON Management Module. Such mod-
ule exploits the peer’s SCI to lighten the neighbor selection
process. The objective is to reduce the network load, i.e.
the number of accessed peers and the computational effort
which is required from each accessed peer. To this end, the
information stored in the SCI are appropriately exploited to
effectively apply the triangular inequality to prune out non-
relevant peers and to avoid useless distance computations.

3.4 Query Routing Module
The role of the Query Routing Module is to provide the

PDMS with advanced semantic query routing functionalities
and it consists of two parts: The SRI Management Module,
which has the role of managing the creation and evolution
of the index structures involved in the routing process (the
SRIs); and the Routing Management one, which helps each
peer receiving a query in routing it towards the best subnet-
works originating at its neighbors.

3.4.1 SRI Management Module
Each peer maintains a Semantic Routing Index (SRI) con-

taining cumulative information which summarize the seman-
tic approximation capabilities w.r.t. its schema of the whole
subnetworks rooted at each of its neighbors. In particular,
for each schema concept ci and each neighbor nj , the SRI
contains a score expressing how ci is semantically approx-
imated by the subnetwork rooted at nj . For instance, in
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PeerA 0.91 0.88 0.83 …
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Figure 7: A portion of Peer B’s SRI for the reference
example

Figure 7 representing Peer B’s SRI for the reference exam-
ple, the concept plot is approximated with a score of 0.83
by the subnetwork rooted at Peer A.

The operations for the creation and update of the SRIs are
on the SRI Management Module’s responsibility. In partic-
ular, each peer creates its own SRI when entering the net-
work following a specifically devised protocol whose details
are given in [15]. Further, the same protocol regulates the
update of the SRIs which must occur in response to network
modifications.

3.4.2 Routing Management Module
With SRIs at the PDMS’s disposal, in query forwarding

phase, a peer P accesses its own index for determining the
neighboring peers which are most semantically related to the
concepts in q. For example, if a query q refers to a single
concept C, the choice of the semantically best neighboring
peers can be done by evaluating the column of its SRI cor-
responding to C: This means that Peer A would be the se-
lected neighbor for the concept plot in Figure 7. In general,
each more realistic and thus complex XQuery query involv-
ing several concepts can be interpreted as a formula of predi-
cates specifying the query conditions and combined through
logical connectives. In this case, the choice of the best neigh-
bor can thus be done by applying scoring rules which, for
each neighboring peer Pi, combine the corresponding grades
in the SRI for all the corresponding concepts in q. Specifi-
cally, the fuzzy logic approach presented in [16] is adopted.
Going back to our example (Fig. 7), the score of Peer A for
a query involving the concepts plot and title connected
through and AND operator would be min(0.83, 0.88), being
conjunction dealt with the minimum.

Assuming that an overall score is somehow obtained for a
complex query, different routing strategies can be executed,
each having effectiveness, efficiency or a trade-off between
the two as its priority. In particular, the routing strategies
the Routing Management Module can implement belong to
two main families of navigation policies: The Depth First
(DF), which pursues efficiency as its objective (i.e. its main
objective is to minimize the query path), and the Global
(G), or Goal-based model, which is designed for effectiveness
(i.e. its main objective is to maximize the relevance of the
retrieved results). The DF model provides an SRI-oriented
depth first visiting criteria: It progresses going deeper and
deeper in the network following, at each forwarding step, the
path toward the neighbor characterized by the highest SRI
value; backtracking is only performed when a“blind alley” is
reached. Based on the DF model, the two following routing
policies are implemented:

• DF policy: the“standard”depth-first policy, straightly
implementing the DF model;

• DFF (Depth-First Fan) policy: a variation of DF,
performing depth-first visit with an added twist. Specif-
ically, at each node, DFF performs a “fan” by explor-
ing all the neighbors, then it proceeds in depth to the
best subnetwork, as DF does. DFF is an attempt to
enhance DF, as it tries to capture in less hops more
answers coming from short semantic paths and, thus,
being potentially more relevant than those retrieved
by DF.

In order to better explain how the DF policies work, let us
consider our reference network and see how a query posed
on Peer B and involving the only concept plot would be
routed (see Figures 1) and 7. We use the following notation:
We present the routing sequence of hops as an ordered list,
where each entry P means peer P is accessed and queried,
while (P ) denotes a backtracking hop through peer P . We
consider the navigation until peers B through C (the most
relevant ones) have been queried. For the DF policy this
would be the behavior: Peer B, Peer A (most promising
subnetwork rooted at Peer B), Peer C, (Peer A), (Peer B),
Peer E, Peer D. For DFF: Peer B, Peer A, (Peer B), Peer E,
(a fan is performed before exploring the best subnetwork),
(Peer B), Peer D, (Peer B), (Peer A), Peer C.

Differently from the DF model, in the G one each peer
chooses the best peer to forward the query to in a “global”
way: It does not limit its choice among the neighbors but it
considers all the peers already “discovered” (i.e. for which a
navigation path leading to them has been found) during net-
work exploration and that have still not been visited. This
is mainly achieved by managing and passing along the net-
work an additional structure, called Goal List (GL), which
is a globally ordered list of goals. Each goal G contains in-
formation useful for next peer selection. In particular, it
represents an arc in the network topology, starting from an
already queried peer and going to a destination (and still un-
visited) one. GL is always kept ordered on the basis of the
goals’ semantic relevances, which are calculated by means
of an appropriate function taking into account the whole
path originating from the querying peer. The G model sim-
ply progresses selecting the top goal in GL as the next peer
to be queried. In this way, the G model constantly exploits
backtracking in order to reach back potentially distant goals.
Obviously going back to potentially distant goals (peers) has
a cost in terms of efficiency but always ensures the high-
est possible effectiveness, since the most relevant discovered
peers are always selected.

Based on the G model, two routing policies are imple-
mented, which differ on the basis of the function used for
the goals relevance computation:

• G policy: The function only considers the semantic
relevance of the goals;

• GH (Global Hybrid) policy: This “hybrid” policy
chooses goals following a trade-off between effective-
ness and efficiency. This is achieved by introducing
an ad-hoc parameterizable function f , which does not
only consider a goal G’s semantic relevance semRel
but also its distance hops (expressed in number of
hops) from current peer: f(semRel) = semRel/(hops)k,
k = 0 . . .∞. By simply adjusting the value of k,
the GH policy can be easily tuned more on efficiency
(k →∞) or on effectiveness (k → 0).



Going back to our reference example, this would be the
routing sequence for the G policy: Peer B, Peer A, (Peer B),
Peer E (since the relevance of the goal to Peer E is expected
to be higher than the one to Peer C), (Peer B), (Peer A),
Peer C.

3.5 Query Reformulation
The semantic mappings produced by the Matching mod-

ule is exploited to reformulate the source query to a tar-
get one, compatible with the target peer’s schema. As our
mappings relate the target peer’s schema concepts with the
source ones, reformulation translates to unfolding [20].

At present, we support XQuery FLWOR conjunctive queries
with standard variable use, predicates and wildcards. In
particular, after having substituted each path in the WHERE

and RETURN clauses with the corresponding full paths and
then discarded the variable introduced in the FOR clause, all
the full paths in the query are reformulated by using the
best matches between the nodes in the given source schema
and target schema (e.g. the path /movie/director of Peer
B is automatically reformulated in the corresponding best
match, /film/credits/direction of Peer A). Consider, for
instance, the XQuery representation of our simple running
example’s query:

FOR $x IN /movie

WHERE $x/title = "Indiana Jones IV"

AND $x/director = "Steven Spielberg"

RETURN $x/plot

The reformulation module transforms it in the following tar-
get query, compatible with Peer A’s schema:

FOR $x IN /film

WHERE $x/name = "Indiana Jones IV"

AND $x/credits/direction = "Steven Spielberg"

RETURN $x/story

A score is also assigned to the reformulated query: It is
the composition (for instance, the average) of the scores as-
signed to each path reformulation which is based on the
similarity between the involved nodes, as specified in the
match. In our example (Figure 6): The final reformulation
score is 0.82, since the exploited matches for movie, title,
plot and director have scores of 0.97, 0.81, 0.82 and 0.69,
respectively.

4. EXPERIMENTS
This section describes the empirical evaluation of SUN-

RISE, performed by means of its simulation environment
[17] through which we were able to reproduce the main
conditions characterizing a PDMS environment where au-
tonomous peers freely decide when entering the system. The
simulation engine is based on SimJava 2.0, a discrete, event-
based, general purpose simulator. Figure 8 shows the GUI of
our environment which provides a visual support during the
evaluation. Through this framework we modelled scenarios
corresponding to networks of semantic peers, each with its
own XML schema describing a particular reality.

As in [25], the schemas are derived from real world-data
sets, collected from many different available web sites, such
as IMDb and DBLP Computer Society Bibliography, and
enlarged with new schemas created by introducing struc-
tural and terminological variations on the original ones; in

such a way we were able to fully test the potentialities of
SUNRISE with large PDMSs of semantically related peers.
The schemas differ for their complexity and dimension (they
mean size is in the order of dozens of elements), and be-
long to three main domains: movies, publications and sport.
The networks are automatically produced by SUNRISE net-
work organization algorithms, which establish the connec-
tions among peers according to the semantic similarity be-
tween peers’ schemas. The mean size of our networks is in
the order of some hundreds of nodes.

In order to evaluate the benefits provided by the network
construction and routing techniques, and thus the effective-
ness and efficiency of SUNRISE query answering, we instan-
tiated different queries on randomly selected peers where
each query is a combination, through logical connectives, of
a small number of predicates specifying conditions on con-
cepts. This is the first time we evaluated SUNRISE ex-
ploiting all its features working together. More precisely, we
quantified the advantages on query processing by propagat-
ing each query until a stopping condition is reached consid-
ering two alternatives: Stopping the querying process when
a given number of hops (hops) has been performed and mea-
suring the quality of the results (satisfaction) or, in a dual
way, stopping when a given satisfaction is obtained and mea-
suring the required number of hops. Satisfaction is a specif-
ically introduced quantity that grows proportionally to the
goodness of the results returned by each queried peer [15]. In
particular, we compared the routing strategies presented in
Section 3.4 together with the Global IP-based (GIP) policy,
which is a variation of the Global (G) mechanism: A direct
connection is established between the current peer and the
peer chosen for the following step, avoiding the hops needed
to reach it in the original network topology. This policy can
not be considered a real P2P strategy, but it is an interesting
upper-bound to be shown.

We considered two significant scenarios differing in the
grade of semantic heterogeneity characterizing each peer’s
schema. In the first one, most peers’s XML schemas are
monothematic, while in the second one many are multithe-
matic. Figure 9 shows the trend of the obtained satisfaction
when we gradually vary the stopping condition on hops for
the first scenario. As the Figure shows, SUNRISE network
organization techniques allow a relevant improvement of the
query processing effectiveness, even when no routing capa-
bilities are available. In particular, comparing the R*2 and
R curves, we can appreciate the improvement provided by
the SUNRISE network organization algorithms. Moreover,
exploiting the routing techniques we can achieve even bet-
ter effectiveness. Specifically, the obtained network orga-
nization allows the DF policy to achieve results near to the
upper bound (GIP). Further, the DFF mechanism is initially
less effective than the DF one, since it uses a large number
of hops for performing its “fan” exploration. Nevertheless,
for higher stopping conditions, it becomes increasingly more
effective until it outperforms the DF policy: This is due to
the fact that it visits nearer peers, which have a higher prob-
ability to provide better results. On the other hand, Figure
10 shows the results of the experiments aiming at verifying
the efficiency of SUNRISE query routing: It represents the
trend of the number of required hops for a given satisfaction
goal. As we expected, the DF policy outperforms the oth-

2‘*’ denotes a test performed on a randomly constructed
network topology.



Figure 8: The graphical user interface of SUNRISE
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Figure 9: Satisfaction reached by routing policies
given a maximum number of hops (first scenario)

ers since its priority target is to minimize the query path.
The DFF policy is instead the less efficient one, due to the
number of hops for visiting all the neighboring peers.

In the more complex second scenario, routing becomes
even more relevant for query processing, since interesting
data are spread among a larger number of peers. In this
scenario, the selection of the best peers to forward a query
to is a fundamental challenge, as Figure 11 shows. Differ-
ently from the first scenario, the G policy shows the best
behavior as it selects for each step the available peer with
the highest semantic relevance approximation. The curves
for the GH strategy are also represented: Notice that by
tuning the k parameter, we can handle the trade-off between
efficiency and effectiveness of the query routing. For clarity
of presentation, we omitted the results of randomly con-
structed networks which are similar to the ones in the first
scenario. Figure 12 shows the relation between the num-
ber of queried peers (efficiency) and the satisfaction that
SUNRISE reaches (effectiveness) given a maximum number

2

4

6

8

10

12

14

16

Satisfaction

N
u

m
b

er
 o

f 
h

o
p

s

R 2,65 3,84 4,91 7,27 9,40 11,31 12,77

GIP 2,00 3,00 3,00 4,00 4,00 5,00 6,00

G 2,00 3,44 3,44 4,85 4,85 7,94 9,74

DF 2,00 3,00 3,29 4,31 4,83 6,51 7,73

DFF 2,00 4,00 4,82 6,63 8,16 9,22 10,36

R* 8,67 12,11 14,39 15,70 16,09 16,32 16,57

DF* 2,25 3,55 4,02 6,36 8,18 10,65 11,89

2,0 2,5 3,0 3,5 4,0 4,5 5,0

Figure 10: Mean number of hops needed to reach a
given satisfaction (first scenario)

of hops. In this way, we are able to visualize how the re-
sults obtained by the different policies position themselves
in a combined effectiveness/efficiency plane. As expected,
we observe that the G policy is the most effective one, since
its curve is located near to the satisfaction axis. In contrast,
the DF policy appears as the most efficient one. Moreover,
we can see the effect of k in the GH policy: Increasing k
makes the GH policy more efficient, but less effective. Fi-
nally, notice that the DFF policy can reach satisfaction goals
similar to the ones reached by the G strategy, but in a more
efficient way.

5. CONCLUSIONS
In this paper, we demonstrated that a P2P network for

XML data sharing can benefit from a semantics-aware in-
frastructure like SUNRISE. In our future work we plan to
enhance query routing by also exploiting the information
provided by SONs.
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