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Abstract. The management of different schema versions is required in
long-lived database systems to accomplish data structural changes and
represent their history. Once a suitable data model for schema versioning
support has been defined, appropriate extensions must also be introduced
in the data definition and manipulation languages. Such an extension is
aimed at making the versioning facilities available at user-interface level
and is the basis for the development of advanced multi-schema appli-
cations. In this paper we present extensions to the definition and ma-
nipulation language of the standard object-oriented data model ODMG
for a generalized schema versioning support. To this end, two version-
ing modalities will be considered in a single powerful system: temporal
versioning and management of alternative design versions. As far as the
temporal components are concerned, the proposed extensions of ODL
and OQL will be consistent with the TSQL2 temporal query language.

1 Introduction

Databases and software systems have complex structures which are likely to con-
tinually undergo changes during their lifetime. This is certainly true for OODBs,
which have been mainly developed to model highly dynamic application scenar-
ios where not only the data, but also their structure (i.e. schema) is subject to
change. The need for retaining data entered under any schema definition has led
to the introduction of the schema version notion. Generally speaking, to manage
and maintain versions of a schema means dealing with one of the possible repre-
sentations of the structure of the modeled real world. The application realm of
schema versions may range from the maintenance of legacy data (formatted ac-
cording to past schemas) to the reuse of software components, from the planning
of human activities against alternative scenarios to the management of complex
design processes.

In the object-oriented field, two kinds of schema versions have been con-
sidered: alternative versions (branching approach) and temporal versions. The
former is typical of design environments (CAD/CAM applications), whereas the
latter is required to model histories of structural changes (more suitable for GIS
and multimedia applications). The first model which integrates the two ver-
sioning modalities, in order to enhance the expressive power and application



potentialities of a single OODBMS, is presented in [6]. The model is based on
an ODMG Release 2.0 [2] extension. The standardization infrastructure offered
by the adoption of ODMG as a stepping stone is directed towards a high degree
of portability and interoperability between systems and represents a wide en-
dorsement of the object-oriented approach. The ODMG standard includes three
major components: the Object Model, the Object Definition Language (ODL) and
the Object Query Language (OQL). While [6] represents a desired extension at
object-model level, the addition of generalized schema versioning support to the
ODMG standard still needs an intervention at language level. Such an extension
of ODL and OQL is the main purpose of this work.

The paper is organized as follows: Section 2 presents a brief overview of the
model supporting generalized schema versioning; in Section 3 we propose our
extension to the ODMG languages to make all the model facilities accessible to
users with an SQL-like interface; conclusions will be found in Section 4.

2 Outlook of the underlying model

The object data model we consider here is a general model for the manage-
ment of versions which integrates the pure temporal schema versioning with the
branching versioning approach [6]. It has been developed in the framework of a
comprehensive research project, in which the authors play an active part and to
which [4-6] and the present work are all contributions. In this generalized model,
the identification of a particular schema version relies on the use of a symbolic
name (to denote a design alternative) and two time coordinates (to select a
temporal version with respect to transaction and valid time [7]). Therefore, a
multidimensional mechanism is needed to reference distinct versions also at lan-
guage level. Any version could be referenced through a bitemporal pertinence
and/or a user-defined name (label). A bitemporal pertinence is defined as a dis-
joint union of rectangles, where each rectangle is the product of a transaction-
and valid-time interval (in accordance with the BCDM model [8]). All versions
having the same symbolic label share a common property since, for example,
they belong to the same consolidated version in engineering activities or the
same scenario in GIS. At model level, a database can be represented through a
directed acyclic graph (DAG), corresponding to the version derivation hierarchy
used for CAD/CAM applications. Versions having the same label belong to the
same node in the database graph, whereas the relationships between different
nodes (e.g. the derivation of a new node or the merger of one node into another)
are modelled through the graph edges. All the DAG elements are timestamped
with transaction time in order to keep track of all the schema changes effected
in the system.

Schema changes are supported by means of a collection of primitive algebraic
operations. They are grouped into two sets on the basis of the DAG element on
which they operate. The set of “schema changes on node” primitives includes
a complete set of operations acting on the elements of the object-oriented data
model supported, such as attributes and classes. The set of “schema changes



on edge” primitives provides support for the integration of characteristics of a
schema version with schema versions belonging to other nodes. For example,
the primitive to merge versions (MergeVersion in [6]) creates a new schema
version by merging schema versions (and their corresponding extant data) be-
longing to different nodes. A listing of all the primitives supported by the model
and a definition of their formal semantics can be found in [6]. All the schema
modification statements considered in this paper can always be implemented by
means of such primitives, although we will not show details here, for the sake of
brevity.

3 Extensions to the ODMG languages

The proposed ODMG language extensions follow some basic principles:

— they are SQL-compatible as OQL is very close to SQL 92;

— the ODL extensions support a complete set of primitive schema changes.
In particular, they support all semantic constructs for the general schema
versioning mechanism presented in [6];

— the versioning granularity is the schema;

— an internal approach to schema changes is adopted;

— they are TSQL2-compatible [11] as far as temporal parts are concerned.

In the object-oriented field, an important aspect which involves the schema ver-
sioning is the choice of the level at which versioning is supported. The alternative
is between the single class and the entire schema. We adopt the schema as ver-
sioning granularity since it automatically provides a complete view of the set of
class versions tied together in a schema version. In this way, it makes it easier
to check the inter-class consistency and the management of queries on objects
belonging to different class versions.

Following the internal approach to schema changes, when the schema under-
goes a change, the definition of a complete new version to be added is not allowed
and the only way of doing it is to apply a sequence of primitive schema changes
to an already existing version. In this way, we provide the system with de-
fault semantics for automatic database conversion and an automatic consistency
checking associated with each schema change primitive [4]. A schema change
primitive is a non-decomposable operation acting on the schema. The support
of a complete set of primitive changes allows the execution of any possible schema
update. In fact, complex schema updates can be effected via sequences of schema
change primitives.

3.1 Schema selection

The schema version selection is achieved through the SET SCHEMA statement
included as OQL extension. It is basically the same statement introduced for
TSQL2 [3,11], augmented with a LABEL clause. Its complete form is:



SET SCHEMA <schema selection condition>

<schema selection condition> ::=
LABEL <label>
AND VALID <datetime value expression>
AND TRANSACTION <datetime value expression>

It allows default values to be set for label, valid and transaction time to be
employed by subsequent statements. The value set is used as a default context
until a new SET SCHEMA is executed or an end-of-transaction command is issued.
Notice that, although the valid-time and label defaults are used to select schema
versions for the execution of any statement, the transaction-time default is used
only for retrievals. Owing to the definition of transaction time, only current
schema versions (with transaction time equal to now) may undergo changes.
Therefore, for the execution of schema updates, the transaction-time specified
in the TRANSACTION clause of the SET SCHEMA statement is simply ignored, and
the current transaction time now (see Subsection 3.5 for more details) is used
instead. Moreover, one (or two) of the selection conditions may not be specified.
Also in this case preexisting defaults are used.

In general, the SET SCHEMA statement could “hit” more than one schema
version, for example when intervals of valid- or transaction-time are specified.
To solve this problem we distinguish between two cases:

— for schema modifications we require that only one schema version is selected,
otherwise the statement is rejected and the transaction aborted;

— for retrievals several schema versions can qualify for temporal selection at
the same time. In this case, retrievals can be based on a completed schema
[10], derived from all the selected schema versions.

Further details on multi-schema query processing can be found, for instance,
in [3,9]. The scope of a SET SCHEMA statement is, in any case, the transaction in
which it is executed. Therefore, for transactions not containing any SET SCHEMA
command, a global default should be defined for the database. As far as transac-
tion and valid time are concerned, the current and present schema is implicitly
assumed, whereas a global default label could be defined by the database ad-
ministrator by means of the following command:

SET CURRENT_LABEL <label>
Obviously, this definition is overridden by explicit specification in SET SCHEMA
statements found in transactions.
3.2 Extensions to the ODL for direct DAG manipulation

ODMG includes standard languages (ODL and OQL) for object-oriented data-
bases. Using ODL, only one schema, the initial one, can be defined per database.
The definition of the schema consists of specifications concerning model elements,



like interfaces, classes and so on. The main object of our ODMG language ex-
tensions is to enable full schema development and maintenance by introducing
the concept of schema version at language level.

Node creation statement

A schema version can only be explicitly introduced through the CREATE SCHEMA
statement added to ODL. It requires a new label associated with the new schema
version. In this way, the explicit creation of a schema version always coincides
with the addition of a new node to the DAG. Afterwards, when the schema
undergoes changes, any new schema version in the same node may only be the
outcome of a sequence of schema changes applied to versions of the node, since
we follow the internal change principle. The CREATE SCHEMA syntax is:

CREATE SCHEMA <label>
<schema def>
[<schema change validity>]

<schema def>::=
<specification> | FROM SCHEMA <schema selection condition>

<schema change validity> ::=
VALID <datetime value expression>

The CREATE SCHEMA statement provides for two creation options:

— the new schema version can be created from scratch, as specified in the
<specification> part. In this case the new node is isolated;

— the new schema version can be the copy of the current schema version se-
lected via the <schema selection condition>. In this case, the node with
the label specified in the FROM SCHEMA clause becomes the father of the new
node with the label specified in the CREATE SCHEMA clause.

The optional <schema change validity> clause is introduced in order to specify
the validity of the schema change, enabling retro- and pro-active changes [4].
The new schema version is assigned the “version coordinates” <label>, [now, c0]
and validity <datetime value expression>. When the <schema change validity>
clause is not specified, the validity is assumed to be [—00, c0]. The node creation
is also recorded in the database DAG by means of a transaction timestamp
[now, 0o], which is associated with the node label.

Let us consider as an application example the activity of an engineering
company interested in designing an aircraft. As a first step, an initial aircraft
structure (schema) is drawn, whose instances are aircraft objects. This can be
done by the introduction of a new node, named “draft”, that include one schema
version (valid from 1940 on) containing the class “Aircraft”, as follows:

CREATE SCHEMA draft
class Aircraft{

attribute string name};
VALID PERIOD ’[1940-01-01 - forever]’



class Aircraft{

S‘V attribute
string name;

}

Fig. 1. Outcomes of the application of CREATE SCHEMA statements

The left side of Figure 1 shows the schema state after the execution of the above
statement. In a second step, the design process can be entrusted to independent
teams to separately develop the engines and the cockpit. For instance, the team
working on the cockpit can use a new node, named “cockpit” derived from the
node “draft” by means of the statement (the outcome is shown on the right side
Figure 1):

CREATE SCHEMA cockpit
FROM SCHEMA LABEL draft AND VALID AT DATE ’now’
VALID PERIOD ’[1998-01-01 - forever]’

The new node contains a schema version which is a copy of the current schema
version belonging to the node “draft” and valid at “now” (SV1). The temporal
pertinence to be assigned to the new schema version is [now, 0o] x[1998,/01/01, co].
In a similar way, a new node “engine” can be derived from the node “draft”.

Node deletion statement

The deletion of a node is accomplished through the DROP NODE statement. Notice
that the deletion implies the removal of the node from the current database. This
is effected by setting to “now” the end of the transaction-time pertinence of all
the schema versions belonging to that node and of the node itself in the DAG.
The syntax of the DROP NODE statement is simply:

DROP NODE <label>

The DROP NODE statement corresponds to a primitive schema change which is
only devoted to the deletion of nodes. Thus, the node to be deleted has to be
isolated. The isolation of a node is accomplished by making the required DROP
EDGE statements precede the DROP NODE statement.

Edge manipulation statements



Edges between nodes can be explicitly added or removed by applying the CREATE
EDGE or DROP EDGE specifications, respectively. The corresponding syntax is:

CREATE EDGE FROM <label> TO <label>

DROP EDGE FROM <label> TD <label>

The CREATE EDGE statement adds a new edge to the DAG with transaction-time
pertinence equal to [now, co]. The DROP EDGE statement removes the edge from
the current database DAG by setting its transaction-time endpoint to now.

3.3 Extension to the ODL for schema version modification

Schema version modifications are handled by two collections of statements. The
former acts on the elements of the ODMG Object Model (attribute, relationship,
operation, exception, hierarchy, class and interface), whereas the latter integrates
existing characteristics of schema versions into other schema versions also inter-
vening on the DAG. All the supported statements correspond to operations that
do not operate an update-in-place but always generate a new schema version. All
these operations act on the current schema version selected via the SET SCHEMA
statement (see Subsection3.1).

The first collection includes a complete set of operations [1] handled by the
CREATE, DROP and ALTER commands modified to accommodate the extensions:

CREATE <element specification> [<schema change validity >]
DROP <element name> [<schema change validity>]

ALTER <element to alter> [<schema change validity>]

The main extension concerns the possibility of specifying the validity of the new
schema version (the full syntax of unexpanded non-terminals can be found in
Appendix A). The outcome of the application of any of these schema changes
is a new schema version with the same label of the affected schema version and
the validity specified, if the <schema change validity> clause exists, [—00, c0]
otherwise. Suppose that, in the engineering company example, the team working
on the “engine” part is interested in adding a new class called “Engine” and an
attribute in the class “Aircraft” to reference the new class. This can be done
by means of the following statements (the outcome is shown on the left side of
Figure 2):

SET SCHEMA LABEL engine
AND VALID AT DATE ’1999-01-01°;
CREATE CLASS Engine VALID PERIOD ’[1940-01-01 - forever]’;
CREATE ATTRIBUTE set<Engine> engines IN Aircraft
VALID PERIOD °’[1940-01-01 - forever]’;

The second collection includes the following statements (the full syntax can
be found in Appendix A):



class Aircraft{
attribute
Q) string name;
S attribute
2 .
set<Engine> engines;
}i

aircraft

class Aircraft{

class Engine{ attribute
string name;

} attribute

S‘V of aircraft set<Engine> engines;
1 o

class Engine{

}

Fig. 2. Outcomes of the application of modification statements

ADD <element to add> FROM SCHEMA <schema selection condition>
[<schema change validity>]

MERGE FROM SCHEMA <schema selection condition>
[<schema change validity>]

The ADD statements can be used for the integration of populated elements, like
attributes or relationships, in the affected schema version, whereas the MERGE
statement can be used for the merging of two entire schema versions. They
originate from the CAD/CAM field where they are necessary for a user-driven
design version control. They implicitly operate on the DAG by binding the in-
volved nodes by means of edges. Both statements require two schema versions:
the affected schema version, selected via the SET SCHEMA statement, and the
source schema version from which the required characteristics are extracted or
are to integrate, selected via the <schema selection condition> clause. Notice
that the main difference between the use of the ADD and the CREATE statements
is that the former consider populated elements (with values inherited) belonging
to the source schema version, while the latter simply adds new elements with a
default value. In our airplane design example, two consolidated schema versions
from the nodes “engine” and “cockpit” can be merged to give birth to a new
node called “aircraft”. This last represents the final state of the design process:

CREATE SCHEMA aircraft
FROM SCHEMA LABEL engine AND VALID AT DATE ’1990/01/01°
VALID PERIOD °’[1950-01-01 - forever]’;



SET SCHEMA LABEL aircraft

AND VALID AT DATE ’1999-01-01’;
MERGE FROM SCHEMA LABEL cockpit

AND VALID IN PERIOD °’[2010]°
VALID PERIOD ’[1950/01/01 - forever]’;

The outcome is shown on the right side of Figure 2. The first statement creates
a new node called “aircraft” by making a copy of the current schema version
belonging to the “engine” node valid at ’1990/01/01’. Then, the SET SCHEMA
statement sets the default values for label and valid time. The last statement
integrates in the selected schema version the schema version belonging to the
“cockpit” node valid in 2010. The temporal pertinence to be assigned to the new
schema version is [1950/01/01, co].

3.4 Data manipulation operations

Data manipulation statements (retrieval and modification operations) can use
different schema versions if preceded by appropriate SET SCHEMA instructions.
However, we propose that single statements can also operate on different nodes
at the same time. To this purpose, labels can also be used as prefixes of path
expressions. When one path expression starts with a label of a node, such a node
is used as a context for the evaluation of the rest of the path expression. For
instance, the following statement:

SELECT d.name
FROM draft.Aircraft d, cockpit.Aircraft c
WHERE d.name=c.name

retrieves all the aircraft names defined in the initial design version labelled
“draft”, which are still included in the successive “cockpit” design version.
The expression draft.Aircraft denotes the aircraft class in the node labelled
“draft”, while the expression cockpit.Aircraft denotes a class with the same
name in the node “cockpit”. When the label specifier is omitted in a path ex-
pression, the default label set by the latest SET SCHEMA (or the global default)
is assumed.

3.5 Transactions and schema changes

Transactions involving schema changes may also involve data manipulation oper-
ations (e.g. to overcome default mechanisms for propagating changes to objects).
Therefore, schema modification and data manipulation statements can be inter-
leaved according to user needs between the BEGIN TRANSACTION statement and
the COMMIT or ROLLBACK statements. The main issues concerning the interaction
between transactions and schema modifications are:

— the semantics of now, that is, which are the current schema versions which
can undergo changes and which is the transaction-time pertinence of the new
schema versions of the committed transactions,



— how schema modifications are handled inside transactions, in particular on
which state the statements which follow a schema modification operate.

A typical transaction has the following form:

BEGIN TRANSACTION
SET SCHEMA LABEL /
AND VALID ss,
AND TRANSACTION ssy;

COMMIT WORK

We assume that the transaction-time tt7 assigned to a transaction 7 is the
beginning time of the transaction itself. Due to the atomicity property, the whole
transaction, if committed, can be considered as instantly executed at t¢7. There-
fore, also the now value can always be considered equal to ¢t while the trans-
action is executing. Since “now” in transaction time and “now” in valid time
coincide, the same time value tt7 can also be used as the current (constant)
value of “now” with respect to valid time during the transaction processing. In
this way, any statement referring “now”-relative valid times within a transaction
can be processed consistently. Notice that, if we had chosen as tt7 the commit
time of T, as other authors propose [7], the value of “now” would have been
unknown for the whole transaction duration and, thus, how to process state-
ments referencing “now” in valid time during the transaction would have been
a serious problem. Moreover, since now = ttr is the beginning of transaction
time, the new schema versions which are outcomes of any schema modification
are associated with a temporal pertinence which starts at tir.

When schema and data modification operations are interleaved in a trans-
action, data manipulation operations have to operate on intermediate database
states generated by the transaction execution. These states may contain schemas
which are incrementally modified by the DDL statements and which may also
be inconsistent. A correct and consistent outcome is, thus, the developer’s re-
sponsibility. The global consistency of the final state reached by the transaction
will be automatically checked by the system at commit time: in case consistency
violations are detected, the transaction will be aborted.

4 Conclusions and Future work

We have proposed extensions to the ODMG data definition and manipulation
languages for generalized schema versioning support. This completes the ODMG
extension initiated in [4-6] with the work on the data model. The proposed
extensions are compatible with SQL-92 and TSQL2, as much as possible, and
include all the primitive schema change operations considered for the model
and, in general, in OODB literature. Future work will consider the formalization
of the semantics of the proposed language extensions, based on the algebraic
operations proposed in [6]. Further extensions could also consider the addition
of other schema versioning dimensions of potential interest, like spatial ones [9].
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Syntax details

The non-terminal elements which are not expanded in this Appendix can be
found in the BNF specification of ODMG ODL [2] and TSQL2 [11].

<element specification>::=

<element specification in interface> IN <interface name>
<interface specification>

<interface specification>::=

INTERFACE <interface name>
CLASS <class name>

<element specification in interface> ::=

ATTRIBUTE <domain type> <attribute name> [<fixed array size>|
RELATIONSHIP <target of path> <relationship name>
INVERSE <interface name>::<relationship name>



| OPERATION <op type spec> <operation name> <parameter dcls>
[RAISES(<scoped name list>)] CODE <code spec>

| EXCEPTION <exception name> TO OPERATION <operation name>

| EXCEPTION <exception name> {[<member list>|}

| SUPERINTERFACE <interface name>

<element name>::=
<element name in interface> IN <interface name>
| <interface specification>

<element name in interface> ::=
ATTRIBUTE <attribute name>
| RELATIONSHIP <relationship name>
| OPERATION <operation name>
| EXCEPTION <exception name> TO OPERATION <operation name>
| EXCEPTION <exception name>
| SUPERINTERFACE <interface name>

<element to alter>::=
<element to alter in interface> IN <interface name>
| INTERFACE NAME <interface name> INTO <interface name>
| CLASS NAME <class name> INTO <class name>

<element to alter in interface>::=
ATTRIBUTE NAME <attribute name> INTO <attribute name>
ATTRIBUTE TYPE <attribute name> INTO <domain type>

RELATIONSHIP NAME <relationship name> INTO <relationship name>

INVERSE TYPE <relationship name> INTO <relationship name>
OPERATION NAME <operation name> INTO <operation name>
OPERATION CODE <operation name> INTO INPUT <op type spec>
OUTPUT <parameter dcls> CODE <code spec>
| EXCEPTION NAME <exception name> INTO <exception name>
| EXCEPTION TYPE <exception name> INTO {[<member list>]}

|
|
| RELATIONSHIP TYPE <relationship name> INTO <target of path>
|
|
|

<element to add>::=
<element to add in interface> IN <interface name>
| <interface specification>

<element to add in interface> ::=
ATTRIBUTE <attribute name>
| RELATIONSHIP <relationship name>
| OPERATION <operation name>
| EXCEPTION <exception name>



