
ODMG language extensions for generalized

schema versioning support

Fabio Grandi and Federica Mandreoli

C�S�I�TE��C�N�R� � D�E�I�S�
University of Bologna� Viale Risorgimento �� I�����	 Bologna� Italy

�fgrandi�fmandreoli��deis�unibo�it

Abstract� The management of di
erent schema versions is required in
long�lived database systems to accomplish data structural changes and
represent their history� Once a suitable data model for schema versioning
support has been de�ned� appropriate extensions must also be introduced
in the data de�nition and manipulation languages� Such an extension is
aimed at making the versioning facilities available at user�interface level
and is the basis for the development of advanced multi�schema appli�
cations� In this paper we present extensions to the de�nition and ma�
nipulation language of the standard object�oriented data model ODMG
for a generalized schema versioning support� To this end� two version�
ing modalities will be considered in a single powerful system� temporal
versioning and management of alternative design versions� As far as the
temporal components are concerned� the proposed extensions of ODL
and OQL will be consistent with the TSQL� temporal query language�

� Introduction

Databases and software systems have complex structures which are likely to con�
tinually undergo changes during their lifetime� This is certainly true for OODBs�
which have been mainly developed to model highly dynamic application scenar�
ios where not only the data� but also their structure �i�e� schema� is subject to
change� The need for retaining data entered under any schema de�nition has led
to the introduction of the schema version notion� Generally speaking� to manage
and maintain versions of a schema means dealing with one of the possible repre�
sentations of the structure of the modeled real world� The application realm of
schema versions may range from the maintenance of legacy data �formatted ac�
cording to past schemas� to the reuse of software components� from the planning
of human activities against alternative scenarios to the management of complex
design processes�

In the object�oriented �eld� two kinds of schema versions have been con�
sidered� alternative versions �branching approach� and temporal versions� The
former is typical of design environments �CAD�CAM applications�� whereas the
latter is required to model histories of structural changes �more suitable for GIS
and multimedia applications�� The �rst model which integrates the two ver�
sioning modalities� in order to enhance the expressive power and application

potentialities of a single OODBMS� is presented in �	
� The model is based on
an ODMG Release ��� ��
 extension� The standardization infrastructure o
ered
by the adoption of ODMG as a stepping stone is directed towards a high degree
of portability and interoperability between systems and represents a wide en�
dorsement of the object�oriented approach� The ODMG standard includes three
major components� the Object Model� the Object De�nition Language �ODL� and
the Object Query Language �OQL�� While �	
 represents a desired extension at
object�model level� the addition of generalized schema versioning support to the
ODMG standard still needs an intervention at language level� Such an extension
of ODL and OQL is the main purpose of this work�

The paper is organized as follows� Section � presents a brief overview of the
model supporting generalized schema versioning� in Section � we propose our
extension to the ODMG languages to make all the model facilities accessible to
users with an SQL�like interface� conclusions will be found in Section ��

� Outlook of the underlying model

The object data model we consider here is a general model for the manage�
ment of versions which integrates the pure temporal schema versioning with the
branching versioning approach �	
� It has been developed in the framework of a
comprehensive research project� in which the authors play an active part and to
which ���	
 and the present work are all contributions� In this generalized model�
the identi�cation of a particular schema version relies on the use of a symbolic
name �to denote a design alternative� and two time coordinates �to select a
temporal version with respect to transaction and valid time ��
�� Therefore� a
multidimensional mechanism is needed to reference distinct versions also at lan�
guage level� Any version could be referenced through a bitemporal pertinence

and�or a user�de�ned name �label�� A bitemporal pertinence is de�ned as a dis�
joint union of rectangles� where each rectangle is the product of a transaction�
and valid�time interval �in accordance with the BCDM model ��
�� All versions
having the same symbolic label share a common property since� for example�
they belong to the same consolidated version in engineering activities or the
same scenario in GIS� At model level� a database can be represented through a
directed acyclic graph �DAG�� corresponding to the version derivation hierarchy
used for CAD�CAM applications� Versions having the same label belong to the
same node in the database graph� whereas the relationships between di
erent
nodes �e�g� the derivation of a new node or the merger of one node into another�
are modelled through the graph edges� All the DAG elements are timestamped
with transaction time in order to keep track of all the schema changes e
ected
in the system�

Schema changes are supported by means of a collection of primitive algebraic
operations� They are grouped into two sets on the basis of the DAG element on
which they operate� The set of �schema changes on node� primitives includes
a complete set of operations acting on the elements of the object�oriented data
model supported� such as attributes and classes� The set of �schema changes

on edge� primitives provides support for the integration of characteristics of a
schema version with schema versions belonging to other nodes� For example�
the primitive to merge versions �MergeVersion in �	
� creates a new schema
version by merging schema versions �and their corresponding extant data� be�
longing to di
erent nodes� A listing of all the primitives supported by the model
and a de�nition of their formal semantics can be found in �	
� All the schema
modi�cation statements considered in this paper can always be implemented by
means of such primitives� although we will not show details here� for the sake of
brevity�

� Extensions to the ODMG languages

The proposed ODMG language extensions follow some basic principles�

� they are SQL�compatible as OQL is very close to SQL ���
� the ODL extensions support a complete set of primitive schema changes�
In particular� they support all semantic constructs for the general schema
versioning mechanism presented in �	
�

� the versioning granularity is the schema�
� an internal approach to schema changes is adopted�
� they are TSQL��compatible ���
 as far as temporal parts are concerned�

In the object�oriented �eld� an important aspect which involves the schema ver�
sioning is the choice of the level at which versioning is supported� The alternative
is between the single class and the entire schema� We adopt the schema as ver�
sioning granularity since it automatically provides a complete view of the set of
class versions tied together in a schema version� In this way� it makes it easier
to check the inter�class consistency and the management of queries on objects
belonging to di
erent class versions�

Following the internal approach to schema changes� when the schema under�
goes a change� the de�nition of a complete new version to be added is not allowed
and the only way of doing it is to apply a sequence of primitive schema changes
to an already existing version� In this way� we provide the system with de�
fault semantics for automatic database conversion and an automatic consistency
checking associated with each schema change primitive ��
� A schema change
primitive is a non�decomposable operation acting on the schema� The support
of a complete set of primitive changes allows the execution of any possible schema
update� In fact� complex schema updates can be e
ected via sequences of schema
change primitives�

��� Schema selection

The schema version selection is achieved through the SET SCHEMA statement
included as OQL extension� It is basically the same statement introduced for
TSQL� ��� ��
� augmented with a LABEL clause� Its complete form is�

SET SCHEMA �schema selection condition�

�schema selection condition� ���
LABEL �label�

AND VALID �datetime value expression�
AND TRANSACTION �datetime value expression�

It allows default values to be set for label� valid and transaction time to be
employed by subsequent statements� The value set is used as a default context
until a new SET SCHEMA is executed or an end�of�transaction command is issued�
Notice that� although the valid�time and label defaults are used to select schema
versions for the execution of any statement� the transaction�time default is used
only for retrievals� Owing to the de�nition of transaction time� only current
schema versions �with transaction time equal to now� may undergo changes�
Therefore� for the execution of schema updates� the transaction�time speci�ed
in the TRANSACTION clause of the SET SCHEMA statement is simply ignored� and
the current transaction time now �see Subsection ��� for more details� is used
instead� Moreover� one �or two� of the selection conditions may not be speci�ed�
Also in this case preexisting defaults are used�

In general� the SET SCHEMA statement could �hit� more than one schema
version� for example when intervals of valid� or transaction�time are speci�ed�
To solve this problem we distinguish between two cases�

� for schema modi�cations we require that only one schema version is selected�
otherwise the statement is rejected and the transaction aborted�

� for retrievals several schema versions can qualify for temporal selection at
the same time� In this case� retrievals can be based on a completed schema
���
� derived from all the selected schema versions�

Further details on multi�schema query processing can be found� for instance�
in ��� �
� The scope of a SET SCHEMA statement is� in any case� the transaction in
which it is executed� Therefore� for transactions not containing any SET SCHEMA

command� a global default should be de�ned for the database� As far as transac�
tion and valid time are concerned� the current and present schema is implicitly
assumed� whereas a global default label could be de�ned by the database ad�
ministrator by means of the following command�

SET CURRENT LABEL �label�

Obviously� this de�nition is overridden by explicit speci�cation in SET SCHEMA

statements found in transactions�

��� Extensions to the ODL for direct DAG manipulation

ODMG includes standard languages �ODL and OQL� for object�oriented data�
bases� Using ODL� only one schema� the initial one� can be de�ned per database�
The de�nition of the schema consists of speci�cations concerning model elements�

like interfaces� classes and so on� The main object of our ODMG language ex�
tensions is to enable full schema development and maintenance by introducing
the concept of schema version at language level�

Node creation statement

A schema version can only be explicitly introduced through the CREATE SCHEMA

statement added to ODL� It requires a new label associated with the new schema
version� In this way� the explicit creation of a schema version always coincides
with the addition of a new node to the DAG� Afterwards� when the schema
undergoes changes� any new schema version in the same node may only be the
outcome of a sequence of schema changes applied to versions of the node� since
we follow the internal change principle� The CREATE SCHEMA syntax is�

CREATE SCHEMA �label�
�schema def�

��schema change validity�

�schema def����
�speci�cation� j FROM SCHEMA �schema selection condition�

�schema change validity� ���
VALID �datetime value expression�

The CREATE SCHEMA statement provides for two creation options�

� the new schema version can be created from scratch� as speci�ed in the
�speci�cation� part� In this case the new node is isolated�

� the new schema version can be the copy of the current schema version se�
lected via the �schema selection condition�� In this case� the node with
the label speci�ed in the FROM SCHEMA clause becomes the father of the new
node with the label speci�ed in the CREATE SCHEMA clause�

The optional �schema change validity� clause is introduced in order to specify
the validity of the schema change� enabling retro� and pro�active changes ��
�
The new schema version is assigned the �version coordinates��label�� �now��

and validity �datetime value expression�� When the �schema change validity�
clause is not speci�ed� the validity is assumed to be �����
� The node creation
is also recorded in the database DAG by means of a transaction timestamp
�now��
� which is associated with the node label�

Let us consider as an application example the activity of an engineering
company interested in designing an aircraft� As a �rst step� an initial aircraft
structure �schema� is drawn� whose instances are aircraft objects� This can be
done by the introduction of a new node� named �draft�� that include one schema
version �valid from ���� on� containing the class �Aircraft�� as follows�

CREATE SCHEMA draft

class Aircraftf
attribute string nameg�

VALID PERIOD ������������ � forever��

class Aircraft{

1 string name;
 attributeSV

 }

vt

‘40

SV
1

tt

‘60 ‘90

draft

vt

‘40

SV
1

tt

‘90‘60

draft

vt

‘40

tt

SV

‘98‘60 ‘90

1

engine

vt

‘40

tt

SV

cockpit

‘98‘60 ‘90

1

Fig� �� Outcomes of the application of CREATE SCHEMA statements

The left side of Figure � shows the schema state after the execution of the above
statement� In a second step� the design process can be entrusted to independent
teams to separately develop the engines and the cockpit� For instance� the team
working on the cockpit can use a new node� named �cockpit� derived from the
node �draft� by means of the statement �the outcome is shown on the right side
Figure ���

CREATE SCHEMA cockpit

FROM SCHEMA LABEL draft AND VALID AT DATE �now�

VALID PERIOD �����	������ � forever��

The new node contains a schema version which is a copy of the current schema
version belonging to the node �draft� and valid at �now� �SV��� The temporal
pertinence to be assigned to the new schema version is �now��
��������������
�
In a similar way� a new node �engine� can be derived from the node �draft��

Node deletion statement

The deletion of a node is accomplished through the DROP NODE statement� Notice
that the deletion implies the removal of the node from the current database� This
is e
ected by setting to �now� the end of the transaction�time pertinence of all
the schema versions belonging to that node and of the node itself in the DAG�
The syntax of the DROP NODE statement is simply�

DROP NODE �label�

The DROP NODE statement corresponds to a primitive schema change which is
only devoted to the deletion of nodes� Thus� the node to be deleted has to be
isolated� The isolation of a node is accomplished by making the required DROP

EDGE statements precede the DROP NODE statement�

Edge manipulation statements

Edges between nodes can be explicitly added or removed by applying the CREATE
EDGE or DROP EDGE speci�cations� respectively� The corresponding syntax is�

CREATE EDGE FROM �label� TO �label�

DROP EDGE FROM �label� TO �label�

The CREATE EDGE statement adds a new edge to the DAG with transaction�time
pertinence equal to �now��
� The DROP EDGE statement removes the edge from
the current database DAG by setting its transaction�time endpoint to now�

��� Extension to the ODL for schema version modi�cation

Schema version modi�cations are handled by two collections of statements� The
former acts on the elements of the ODMG Object Model �attribute� relationship�
operation� exception� hierarchy� class and interface�� whereas the latter integrates
existing characteristics of schema versions into other schema versions also inter�
vening on the DAG� All the supported statements correspond to operations that
do not operate an update�in�place but always generate a new schema version� All
these operations act on the current schema version selected via the SET SCHEMA

statement �see Subsection�����
The �rst collection includes a complete set of operations ��
 handled by the

CREATE� DROP and ALTER commands modi�ed to accommodate the extensions�

CREATE �element speci�cation� ��schema change validity�

DROP �element name� ��schema change validity�

ALTER �element to alter� ��schema change validity�

The main extension concerns the possibility of specifying the validity of the new
schema version �the full syntax of unexpanded non�terminals can be found in
Appendix A�� The outcome of the application of any of these schema changes
is a new schema version with the same label of the a
ected schema version and
the validity speci�ed� if the �schema change validity� clause exists� �����

otherwise� Suppose that� in the engineering company example� the team working
on the �engine� part is interested in adding a new class called �Engine� and an
attribute in the class �Aircraft� to reference the new class� This can be done
by means of the following statements �the outcome is shown on the left side of
Figure ���

SET SCHEMA LABEL engine

AND VALID AT DATE �������������

CREATE CLASS Engine VALID PERIOD ������������ � forever���

CREATE ATTRIBUTE set
Engine� engines IN Aircraft

VALID PERIOD ������������ � forever���

The second collection includes the following statements �the full syntax can
be found in Appendix A��

vt

‘40

tt

SV

engine

‘98‘60 ‘90

1

SV
2

class Engine{

 }

SV
2

class Aircraft{

 };

 attribute
 string name;
 attribute

 set<Engine> engines;

SV
class Engine{

1
of

3

aircraft

1

SV

SV

 }

SV

2

1
1

2

SV

SV

1
SV

SV

vt

‘40

tt

‘98‘60 ‘90

cockpit

now

vt

‘40

tt

‘90‘60

draft
vt

‘40

tt

engine

‘98‘60 ‘90

now

vt

‘40

tt

‘90‘60

aircraft

class Aircraft{
 attribute
 string name;
 attribute
 set<Engine> engines;

 };

Fig� �� Outcomes of the application of modi�cation statements

ADD �element to add� FROM SCHEMA �schema selection condition�
��schema change validity�

MERGE FROM SCHEMA �schema selection condition�
��schema change validity�

The ADD statements can be used for the integration of populated elements� like
attributes or relationships� in the a
ected schema version� whereas the MERGE

statement can be used for the merging of two entire schema versions� They
originate from the CAD�CAM �eld where they are necessary for a user�driven
design version control� They implicitly operate on the DAG by binding the in�
volved nodes by means of edges� Both statements require two schema versions�
the a
ected schema version� selected via the SET SCHEMA statement� and the
source schema version from which the required characteristics are extracted or
are to integrate� selected via the �schema selection condition� clause� Notice
that the main di
erence between the use of the ADD and the CREATE statements
is that the former consider populated elements �with values inherited� belonging
to the source schema version� while the latter simply adds new elements with a
default value� In our airplane design example� two consolidated schema versions
from the nodes �engine� and �cockpit� can be merged to give birth to a new
node called �aircraft�� This last represents the �nal state of the design process�

CREATE SCHEMA aircraft

FROM SCHEMA LABEL engine AND VALID AT DATE ������������

VALID PERIOD ����
������� � forever���

SET SCHEMA LABEL aircraft

AND VALID AT DATE �������������

MERGE FROM SCHEMA LABEL cockpit

AND VALID IN PERIOD ��������

VALID PERIOD ����
������� � forever���

The outcome is shown on the right side of Figure �� The �rst statement creates
a new node called �aircraft� by making a copy of the current schema version
belonging to the �engine� node valid at ������������� Then� the SET SCHEMA

statement sets the default values for label and valid time� The last statement
integrates in the selected schema version the schema version belonging to the
�cockpit� node valid in ����� The temporal pertinence to be assigned to the new
schema version is �������������
�

��� Data manipulation operations

Data manipulation statements �retrieval and modi�cation operations� can use
di
erent schema versions if preceded by appropriate SET SCHEMA instructions�
However� we propose that single statements can also operate on di
erent nodes
at the same time� To this purpose� labels can also be used as pre�xes of path
expressions� When one path expression starts with a label of a node� such a node
is used as a context for the evaluation of the rest of the path expression� For
instance� the following statement�

SELECT d�name

FROM draft�Aircraft d� cockpit�Aircraft c

WHERE d�name�c�name

retrieves all the aircraft names de�ned in the initial design version labelled
�draft�� which are still included in the successive �cockpit� design version�
The expression draft�Aircraft denotes the aircraft class in the node labelled
�draft�� while the expression cockpit�Aircraft denotes a class with the same
name in the node �cockpit�� When the label speci�er is omitted in a path ex�
pression� the default label set by the latest SET SCHEMA �or the global default�
is assumed�

��� Transactions and schema changes

Transactions involving schema changes may also involve data manipulation oper�
ations �e�g� to overcome default mechanisms for propagating changes to objects��
Therefore� schema modi�cation and data manipulation statements can be inter�
leaved according to user needs between the BEGIN TRANSACTION statement and
the COMMIT or ROLLBACK statements� The main issues concerning the interaction
between transactions and schema modi�cations are�

� the semantics of now� that is� which are the current schema versions which
can undergo changes and which is the transaction�time pertinence of the new
schema versions of the committed transactions�

� how schema modi�cations are handled inside transactions� in particular on
which state the statements which follow a schema modi�cation operate�

A typical transaction has the following form�

BEGIN TRANSACTION

SET SCHEMA LABEL �
AND VALID ssv

AND TRANSACTION sst�
� � �
COMMIT WORK

We assume that the transaction�time ttT assigned to a transaction T is the
beginning time of the transaction itself� Due to the atomicity property� the whole
transaction� if committed� can be considered as instantly executed at ttT � There�
fore� also the now value can always be considered equal to ttT while the trans�
action is executing� Since �now� in transaction time and �now� in valid time
coincide� the same time value ttT can also be used as the current �constant�
value of �now� with respect to valid time during the transaction processing� In
this way� any statement referring �now��relative valid times within a transaction
can be processed consistently� Notice that� if we had chosen as ttT the commit
time of T � as other authors propose ��
� the value of �now� would have been
unknown for the whole transaction duration and� thus� how to process state�
ments referencing �now� in valid time during the transaction would have been
a serious problem� Moreover� since now � ttT is the beginning of transaction
time� the new schema versions which are outcomes of any schema modi�cation
are associated with a temporal pertinence which starts at ttT �

When schema and data modi�cation operations are interleaved in a trans�
action� data manipulation operations have to operate on intermediate database
states generated by the transaction execution� These states may contain schemas
which are incrementally modi�ed by the DDL statements and which may also
be inconsistent� A correct and consistent outcome is� thus� the developer�s re�
sponsibility� The global consistency of the �nal state reached by the transaction
will be automatically checked by the system at commit time� in case consistency
violations are detected� the transaction will be aborted�

� Conclusions and Future work

We have proposed extensions to the ODMG data de�nition and manipulation
languages for generalized schema versioning support� This completes the ODMG
extension initiated in ���	
 with the work on the data model� The proposed
extensions are compatible with SQL��� and TSQL�� as much as possible� and
include all the primitive schema change operations considered for the model
and� in general� in OODB literature� Future work will consider the formalization
of the semantics of the proposed language extensions� based on the algebraic
operations proposed in �	
� Further extensions could also consider the addition
of other schema versioning dimensions of potential interest� like spatial ones ��
�

References

�� J� Banerjee� W� Kim� H��J� Kim� and H� F� Korth� Semantics and Implementation
of Schema Evolution in Object�Oriented Databases� In Proc� of the ACM�SIGMOD
Annual Conference� pages �������� San Francisco� CA� May �
���

�� R� G� G� Cattell� D� Barry� D� Bartels� M� Berler� J� Eastman� S� Gamerman�
D� Jordan� A� Springer� H� Strickland� and D� Ware� editors� The Object Database
Standard� ODMG ���� Morgan Kaufmann� San Francisco� CA� �

��

�� C� De Castro� F� Grandi� and M� R� Scalas� Schema Versioning for Multitemporal
Relational Databases� Information Systems� ��������
��
�� �

��

�� F� Grandi� F� Mandreoli� and M� R� Scalas� A Formal Model for Temporal Schema
Versioning in Object�Oriented Databases� Technical Report CSITE�����
�� CSITE
� CNR� November �

�� Available on ftp���csite	��deis�unibo�it�pub�report�

�� F� Grandi� F� Mandreoli� and M� R� Scalas� Generalized Temporal Schema Ver�
sioning for GIS� Submitted for publication� �

�

	� F� Grandi� F� Mandreoli� and M� R� Scalas� Supporting design and temporal ver�
sions� a new model for schema versioning in object�oriented databases� Submitted
for publication� �

�

�� C� S� Jensen� J� Cli
ord� S� K� Gadia� P� Hayes� and S� Jajodia et al� The Consensus
Glossary of Temporal Database Concepts � February �

� Version� In O� Etzion�
S� Jajodia� and S� Sripada� editors� Temporal Databases � Research and Practice�
pages �	������ Springer�Verlag� �

�� LNCS No� ��

�

�� C� S� Jensen� M� D� Soo� and R� Snodgrass� Unifying Temporal Data Models via
a Conceptual Model� Information Systems� �
������������ �

��

� J� F� Roddick� F� Grandi� F� Mandreoli� and M� R� Scalas� Towards a Model for
Spatio�Temporal Schema Selection� In Proc� of the DEXA��� STDML Workshop�
Florence� Italy� August �

�

��� J� F� Roddick and R� T� Snodgrass� Schema Versioning� In ���	�
��� R� T� Snodgrass� editor� The TSQL� Temporal Query Language� Kluwer Academic

Publishers� �

��

A Syntax details

The non�terminal elements which are not expanded in this Appendix can be
found in the BNF speci�cation of ODMG ODL ��
 and TSQL� ���
�

�element speci�cation����
�element speci�cation in interface� IN �interface name�

j �interface speci�cation�

�interface speci�cation����
INTERFACE �interface name�

j CLASS �class name�

�element speci�cation in interface� ���
ATTRIBUTE �domain type� �attribute name� ���xed array size�

j RELATIONSHIP �target of path� �relationship name�
INVERSE �interface name����relationship name�

j OPERATION �op type spec� �operation name� �parameter dcls�
�RAISES��scoped name list��
 CODE �code spec�

j EXCEPTION �exception name� TO OPERATION �operation name�
j EXCEPTION �exception name� f��member list�
g
j SUPERINTERFACE �interface name�

�element name����
�element name in interface� IN �interface name�

j �interface speci�cation�

�element name in interface� ���
ATTRIBUTE �attribute name�

j RELATIONSHIP �relationship name�
j OPERATION �operation name�
j EXCEPTION �exception name� TO OPERATION �operation name�
j EXCEPTION �exception name�
j SUPERINTERFACE �interface name�

�element to alter����
�element to alter in interface� IN �interface name�

j INTERFACE NAME �interface name� INTO �interface name�
j CLASS NAME �class name� INTO �class name�

�element to alter in interface����
ATTRIBUTE NAME �attribute name� INTO �attribute name�

j ATTRIBUTE TYPE �attribute name� INTO �domain type�
j RELATIONSHIP NAME �relationship name� INTO �relationship name�
j RELATIONSHIP TYPE �relationship name� INTO �target of path�
j INVERSE TYPE �relationship name� INTO �relationship name�
j OPERATION NAME �operation name� INTO �operation name�
j OPERATION CODE �operation name� INTO INPUT �op type spec�

OUTPUT �parameter dcls� CODE �code spec�
j EXCEPTION NAME �exception name� INTO �exception name�
j EXCEPTION TYPE �exception name� INTO f��member list�
g

�element to add����
�element to add in interface� IN �interface name�

j �interface speci�cation�

�element to add in interface� ���
ATTRIBUTE �attribute name�

j RELATIONSHIP �relationship name�
j OPERATION �operation name�
j EXCEPTION �exception name�

