
Extensional Knowledge for Semantic Query
Optimization in a Mediator Based System �

D. Beneventano1,2, S. Bergamaschi1,2, and F. Mandreoli1

1 Dipartimento di Scienze dell’Ingegneria - Università di Modena e Reggio Emilia
DSI - Via Vignolese 905, 41100 Modena

{domenico.beneventano,sonia.bergamaschi,mandreoli.federica}@unimo.it
2 CSITE-CNR Bologna V.le Risorgimento 2, 40136 Bologna

Abstract. Query processing in global information systems integrating
multiple heterogeneous sources is a challenging issue in relation to the
effective extraction of information available on-line. In this paper we
propose intelligent, tool-supported techniques for querying global infor-
mation systems integrating both structured and semistructured data
sources. The techniques have been developed in the environment of a
data integration, wrapper/mediator based system, MOMIS, and try to
achieve the goal of optimized query reformulation w.r.t local sources.
The developed techniques rely on the availability of integration knowl-
edge whose semantics is expressed in terms of description logics. Inte-
gration knowledge includes local source schemata, a virtual mediated
schema and its mapping descriptions, that is semantic mappings w.r.t.
the underlying sources both at the intensional and extensional level.
Mapping descriptions, obtained as a result of the semi-automatic integra-
tion process of multiple heterogeneous sources developed for the MOMIS
system, include, unlike previous data integration proposals, extensional
intra/interschema knowledge. Extensional knowledge is exploited to per-
form semantic query optimization in a mediator based system as it allows
to devise an optimized query reformulation method. The techniques are
under development in the MOMIS system but can be applied, in gen-
eral, to data integration systems including extensional intra/interschema
knowledge in mapping descriptions.

1 Introduction

The purpose of data integration is to provide a uniform interface to multiple het-
erogeneous sources. Applications range from searching information on the net to
providing an uniform consistent view of data associated with the various legacy
systems of an enterprise. Query processing in such global information systems
environment is a challenging issue which has been faced in many previous works
in both the AI and Database Community [2, 8, 14, 17]. A data integration system,
based on conventional wrapper/mediator architectures, allows the user to pose
a query and receive a unified answer without the need of: locating the sources
� This work was partially supported by MIUR co-funded project D2I.



relevant to the query, interacting with each source in isolation and combining the
data coming from the different sources. Data integration systems usually follow
this architecture: each data source provides a schema and a mediated (global)
virtual schema of all the sources is obtained manually or semi-automatically, for
a particular integration application. The mediated schema has a set of map-
ping descriptions (called source descriptions in [14]) that specify the semantic
mapping between the mediated schema and the source schemas. Unlike previous
mentioned approaches, in the MOMIS system [3, 4], mapping descriptions ob-
tained as a result of the semi-automatic integration process include extensional
intra/interschema knowledge which represents fundamental knowledge for a cor-
rect and complete schema integration [20]. The mediator uses mapping descrip-
tions to reformulate a user query into queries over the source schemata. From
a theoretical point of view, solving a user (mediated) query, i.e. giving a single
unified answer w.r.t. multiple sources, implies to face two main problems: query
reformulation/optimization [11, 12, 14, 15, 18] and object fusion [16, 21].

In this paper we deal with the query reformulation/optimization problem and
propose a theoretical framework providing intelligent, tool-supported techniques
to query global information systems integrating both structured and semistruc-
tured data sources. The framework exploits all the available integration knowl-
edge, and, in particular, extensional inter/intra schema knowledge. Therefore,
we do not address the object fusion problem, which concerns the grouping of in-
formation (from the same or different sources) about the same real-world entity.
Anyway, we believe that it is a relevant topic now and will become more impor-
tant in the future as integration systems cope with more and more information
that has not been nicely structured and partitioned in advance.

The proposed techniques are under development in the MOMIS environment
where they rely on the availability of integration knowledge, whose semantics
is given in terms of description logics. Integration knowledge is expressed in
terms of: local source schemata, a virtual mediated schema and its mapping
descriptions, extensional intra/interschema knowledge.

Extensional knowledge is exploited to perform semantic query optimization in
a mediator based system as it allows to devise an optimized query reformulation
method. In particular, starting from the method developed in [20], we exploit
the “base extension” approach and the description logics inference techniques in
order to face the reformulation/optimization problem of a mediated query.

The outline of the paper is the following. Section 2 summarizes the MOMIS
approach to schema integration and introduces the running example. Section 3
introduces mapping descriptions and base extensions. Finally, Section 4 presents
the MOMIS Query Manager implementing the proposed theoretical framework
by means of examples.

2 Preliminaries

Like other integration projects [1, 19], MOMIS follows a “semantic approach”
to information integration based on the conceptual schema, or metadata, of the



information sources, and on the I3 architecture [13]; for a detailed description of
the MOMIS system see [8, 3] available at http://www.dbgroup.unimo.it/Momis.

The ODLI3 language The system supports an object-oriented language, called
ODLI3 , which is very close to the ODL language [13, 10] and allows a semanti-
cally rich representation of source schemas and object patterns associated with
information sources to be integrated. ODLI3 is a source independent language
used for information extraction to describe heterogeneous schemas of structured
and semistructured data sources in a common way. ODLI3 introduces three main
extensions with respect to ODL [13]: intentional relationships, that are termino-
logical relationships expressing intra and inter-schema knowledge for the source
schemas, extensional relationships and integrity constraint rules. The intensional
relationships of synonymity (syn), hypernymy (bt) and positive association (nt)
between two classes C1 and C2 may be “strengthened” by establishing that they
are also extensional relationships [9]. Consequently, the following extensional
relationships can be defined in ODLI3 :

C1 synext C2: the instances of C1 are the same of C2.
C1 btext C2: the instances of C1 are a superset of the instances of C2.
C1 ntext C2: the instances of C1 are a subset of the instances of C2.
C1 disjext C2: the instances of C1 are disjoint from the instances of C2.

In contrast with [20] we do not introduce an overlap relationship as we assume
a default overlap relationships among two classes if no extensional relationship
is specified. Moreover, extensional relationships “constrain” the structure of the
two classes C1 and C2. If an extensional relationship C1 ntext C2 is issued, we
have that:

– strict inheritance between C1 and C2 is enforced for the common attributes;
– both C1 and C2 may have further attributes as we adopt usual description
logics semantics (i.e. open world semantics).

Extensional relationships can be partially automatically extracted and partially
explicitly declared by the integration designer.

The integrity constraint rules are introduced in ODLI3 in order to express,
in a declarative way, if then integrity constraint rules at both intra- and inter-
sources level. The antecedent and the consequent of an integrity constraint rule
are expressions formulated by the intersection operator (and), the union oper-
ator (or) and the negation operator (not).

ODLI3 descriptions are translated into OLCD (Object Language with Com-
plements allowing Descriptive cycles) descriptions [6] in order to perform De-
scription Logics inferences that will be useful for semantic integration. Indeed,
OLCD supports some interesting reasoning techniques: subsumption and equiv-
alence detection between types (i.e. “is-a” relationships implied by type descrip-
tions), and inconsistency type detection.

In particular, MOMIS translates into OLCD ODLI3 class descriptions, in-
tegrity constraint rules and extensional relationships, giving rise to a schema



called inter-sources schema, formally defined as follows. Let L be a set of lo-
cal class names (denoted by L1, L2, . . .) and let LA be a set of local attributes
(denoted by la1, la2, . . .). LA is a total function LA : L → 2LA which associates
local class names with attributes. The inter-sources schema σ : L → S(LA,L)
associates local class names to their descriptions; an instance I of σ defines the
instances of the local classes: given a local class L, I(L) denotes the set of its
real-world.

Intelligent schema integration The MOMIS approach to intelligent schema
integration is supported by a tool, SI-Designer [3] and is articulated in the fol-
lowing phases:

1. Generation of a Common Thesaurus - The Common Thesaurus, consisting
of intra and inter-schema relationships expressed in ODLI3 , is generated.

2. Affinity analysis of ODLI3 classes - Relationships in the Common The-
saurus are used to evaluate the level of intra and inter source affinity be-
tween classes. The concept of affinity is introduced to formalize the kind of
relationships that can occur between classes from the integration point of
view. The affinity of two classes is established by means of affinity coeffi-
cients based on class names, class structures and their relationships in the
Common Thesaurus.

3. Clustering ODLI3 classes - Classes with affinity in different sources are
grouped together in clusters using hierarchical clustering techniques. The
goal is to identify the classes that have to be integrated since describing the
same or semantically related information.

4. Generation of the mediated schema- A global class is defined for each cluster,
which is representative of all cluster’s classes and is characterized by the
union of their attributes. The Global Schema for the analyzed sources is
composed of all the global classes derived from clusters, and is the basis for
posing queries against the sources.

The Query Manager The user application interacts with MOMIS to query
the Global Schema by using the OQLI3 language. This phase is performed by
the QM that generates the OQLI3 queries for wrappers. Using Mapping Descrip-
tions and DLs techniques, the QM generates in an automatic way the reformu-
lation/optimization of the generic OQLI3 query into different sub-queries, one
for each involved local source.

To achieve the mediated query result, the QM has to assemble each local
sub-query result into a unified data set. This process involves the solution of
redundancy and reconciliation problems, due to the incomplete and overlapping
information available on the local sources, i.e. Object Fusion.

As a mediator is not the owner of the data stored in the local classes but
it only provides a virtual view, this means that the mediator has to recognize
instances of the sources to be fused in an object. This recognition is a difficult
task as each source may have its own techniques to identify objects, like keys



UNIVERSITY source (UNI)

Research Staff(name,e mail,dept code,s code)

School Member(name,school,year,e mail)

Department(dept name,dept code,budget)

Section(section name,s code,length,room code)

Room(room code,seats number,notes)

COMPUTER SCIENCE source (CS)

CS Person(first name,last name)

Professor:CS Person(belongs to:Division,rank)

Student:CS Person(year,takes:set〈Course〉,rank,e mail)

Division(description,address:Location)

Location(city,street,number,country)

Course(course name,taught by:Professor)

TAX POSITION XML source (TP )

<!ELEMENT ListOfStudent (Student*)>

<!ELEMENT Student (name, s code, school name, e mail, tax fee)>

<!ELEMENT name (#PCDATA)>

...

Fig. 1. Three heterogeneous University Sources

for relational or OIDs for object sources, and, usually instances referring to the
same real word object are identified with different keys or OIDs, depending on
the source the object is stored. The idea of our approach is to find semantically
homogeneous attributes for each instance of each local class, on the basis of the
available integration knowledge (see [5]).

Running example We consider three sources with different data model (see
Figure 1). The first source is a relational database, University (S1), contain-
ing data about the staff and the students of a given university. The relations
are: Research Staff, School Member, Department, Section and Room. For a
given professor (in Research Staff) his department (dept code) and his sec-
tion (s code) are stored. In the relation School Member the information name,
year, e mail, and school about students enrolled at the university are stored.

The second source Computer Science (S2) is an object–oriented database
containing information about people belonging to the Computer Science depart-
ment of the same university, and is an object-oriented database. There are six
classes: CS Person, Professor, Student, Division, Location and Course. In-
formation is quite similar to the first source: it stores data on professors and
students, also giving the possibility to retrieve the division of a given professor.
This division may be part of another department, being a logical specialization
of Department. The class Location maintains the division address. With re-
spect to students, we may know the courses they take and their enrollment year.
A third source is also available, Tax Position (S3), derived from the Registry
Office. It consists of an XML file, storing information about student’s tax fees.



The Common Thesaurus may contain the following extensional relationships:
1. UNI.School Member SYNExt TP.Student
2. CS.Student NTExtUNI.School Member
3. CS.Professor NTExt UNI.Research Staff
4. CS.Professor DISJExt UNI.School Member
5. UNI.Research Staff DISJExt TP.Student
6. UNI.Research Staff DISJExt CS.Student
7. CS.Student NTExt CS.CS Person
8. CS.Professor NTExtCS.CS Person

Relationships from 1 to 6 are designer-supplied inter-schema relationships; 7
and 8 are intra–schema extensional relationships automatically extracted by the
MOMIS system from the isa relationships of the COMPUTER SCIENCE source.

An example of integrity constraint rule at intra-source level is the following:

rule Rule1 forall X in CS.Professor:
X.rank = ’full’ then X.belongs_to.description=’department’;

At inter-sources level, both rules between local classes and global/local classes
can be expressed. Examples of inter-sources integrity constraint rules are the
following:

rule Rule2 forall X in UNI.School_Member:
X.school = ’cs’ then X in TP.Student;

rule Rule3 forall X in CS.Student:
X in CS.Student then (X in TP.Student)
and not (X in UNI.Research_Staff);

3 Mapping Descriptions and Base Extensions

3.1 Global Class and Mapping Tables

Let us assume that the first three phases of the integration have been per-
formed on our University integration example1, thus obtaining the mediated
global schema with five clusters and a global class for each cluster. For each
global class a persistent mapping-table storing all the mappings is generated; it
is a table whose rows represent the set of the local classes belonging to the clus-
ter and whose columns represent the global attributes. An element MT [L][ga]
represents the set of attributes of the local class L which are mapped into the
global attribute ga: the value of the ga attribute is a function of the values as-
sumed by the set of attributes MT [L][ga]. Some simple and frequent cases of
such function are the following (see Figure 2 as an example):

– identity : the ga value is equal to the la value; we denote this case as
MT [L][ga] = la.

1 For a detailed description of the mappings selection and of the tool SI-Designer
which assist the designer in this integration phase see [3].



Fig. 2. Mapping Table of the Global Class University Person

– concatenation : the ga value is obtained as a concatenation of the values
assumed by a set of local attributes lai of the local class L; we denote this
case as MT [L][ga] = la1 and . . . and lan (see MT [CS.Student][name]).

When the ga has no correspondence with any attribute of the local class L, the
possible choices are:

– constant : ga assumes into the local class L a costant value set by the de-
signer; we denote this case by MT [L][ga] = const (see the rank attribute).

– undefined : ga is set undefined into the local class L; we denote this case by
MT [L][ga] = null.

Formally, let σ be an inter-sources schema, σ : L → S(LA,L). In order to define
a global class G, we have to consider a subset of L, which are the local classes
of the cluster related to G; this subset is denoted with LG and with LAG we
denote the attributes of LG.

Definition 1 (Global Class). Given a set L of local class names and a set
GA of global attributes (denoted by ga1, ga2, . . . ), a global class G is a tuple
G = (LG, GA, MT) where MT, called mapping table, is a total function MT :
LG ×GA → 2LAG ∪ {const} ∪ {null}.

3.2 Base Extensions

Intuitively, given a global class, a Base Extension gathers up all objects of some
local classes such that the set of Base Extensions satisfies all the extensional
relationships defined over the set of local classes and allows a partitioning of the
set of the sources objects.

Definition 2 (Base Extension set). Let G = (LG,GA,MT ) be a global class
and I be an instance of the inter-sources schema σ : L → S(LA,L). A set of base



UNI.Research_Staff

CS.Professor

CS.CS_Person

BE1 BE2

BE3

BE4

BE5

BE7

UNI.School_Member

TP.Student

CS.Student

BE6

Fig. 3. Base extension Set for the global class University Person

UNI.School_Member

UNI.Research_Staff

CS.CS_Person

CS.Student

CS.Professor

TP.Student

BE1 BE2 BE3 BE4 BE5 BE6 BE7

1

1

0

0

0

0

1

1

1

0

0

0

1

0

1

1

0

1

0

0

1

0

0

0

0

1

1

0

0

0

0

1

1

0

1

0

0

1

0

0

0

0

CL BE

Fig. 4. Tabular representation of the Base Extension Set of University Person

extensions of G on I is a pair (B, F ), where B is a set of base extension names
(denoted by B1, B2, . . .), I(Bi) =

⋂
L∈F (B) I(L), and F is a total function F :

B → 2LG such that:
⋃

B∈B F (B) = LG, and the set
{
I(B)−⋃

L∈(LG−F (B)) I(L) |
B ∈ B

}
is a partition of

⋃
L∈LG

I(L).

At present, we adopt the algorithm of [20] to determine a base extension set2.
Figure 3 shows the Base Extension Set for University Person. A Base extension
set of a Global Class G is represented by a table. Table rows represent the local
classes of the global class and table columns represent the base extensions. The
presence of a 1 in the table cell (L,B) means L ∈ F (B) (e.g. see Figure 4).

The attributes of a Base Extension B are the global attributes which are
mapped, by a not null mapping, into a local class of B. Formally:

Definition 3 (Base Extension Attributes). Let G = (LG,GA,MT ) be a
global class and (B, F ) be the set of base extensions of G, then the attributes of
a base extension B ∈ B are defined as:

A(B) = {ga ∈ GA | ∃L ∈ F (B),MT [L][ga] �= null}.

The Base Extension Attributes of our example are shown in Figure 5.
2 More than one base extension set can be obtained on the basis of the above definition;
the discussion about the quality of the selected set is out of the scope of this paper.



A(BE1) = {name, year, school, rank, e mail, s code, tax fee}
A(BE2) = {name, year, school, rank, e mail, s code, tax fee}
A(BE3) = {name, year, school, rank, e mail, s code, tax fee,takes}
A(BE4) = {name, school}
A(BE5) = {name, rank, dept, e mail, section, school}
A(BE6) = {name, rank, dept, e mail, section, belong to, school}
A(BE7)={name, rank, dept, e mail, section}

Fig. 5. Base Extension Attributes

Definition 4 (Domination). Given a global class G = (LG,GA,MT ), the set
of base extensions (B, F ) of G, and B1, B2 ∈ B we say that B1 dominates B2

w.r.t. the set of global attributes X ⊆ GA iff X ⊆ A(B1) ∩ A(B2) ∧ F (B1) ⊂
F (B2).

4 The MOMIS Query Manager

The MOMIS Query Manager functional architecture is shown in figure 6. As
shown in figure, the optimized query reformulation is obtained on the basis of
the computed Base Extension set and by using the semantic query optimization
techniques previously developed by the authors [7]. In particular, base extensions
allows a query to be rewritten with respect to the local sources, whereas, semantic
query optimization techniques are used to transform the query on the basis of
the intra- and inter-sources integrity constraint rules.

We will show the effectiveness of our optimization method by means of the
following (mediated) query:

Q: select e_mail
from University_Person
where school = ’cs’
and (s_code = ’a1x’ or year = ’2001’ or tax_fee < 200)

Processing the above query, without considering extensional knowledge, would
individuate all the local classes for which at least one of the mediated query
attributes has a not null mapping with it. The candidate local classes are thus all
the local classes of University Person. The query has thus to be reformulated
on the basis of the above classes.

By considering extensional knowledge, i.e. integrity constraint rules and ex-
tensional relationships, and its exploitation by means of base extensions, de-
scription logics, types and mapping table, the access to some local class can be
avoided, obtaining an effective query optimization, independent from any spe-
cific cost model. Let us follow the processing phases of Figure 6 in order to show
this result.



Local Classes Set
Determination of the

ODB-Tools

ODB-Tools

MappingTable

Base Extensions Set

Local Classes Set
Simplified Mediated Query &

Query reformulation
 Local QueriesMediated Query 

Semantic Optimization
of the Query

Mediated Query

of the Local Queries
Semantic Optimization

WrapperExecution
Local Queries

Execution

Local Queries result 

Wrapper

Mediated Query result 

Mediated Query 

Local Queries

Mediated Query 

Assembler

Fig. 6. Query processing phases

1. Semantic optimization of the mediated query
1. the mediated query is transformed by considering the integrity rules at

both intra- and inter-sources level
2. Determination of the Local Classes set

1. the subset of Base Extensions including the global attributes of the query
is computed

2. the local classes included into the Base Extension subset computed at
point 1. are determined

3. Query Reformulation w.r.t local sources
1. query reformulation into local queries on the basis of the classes identified

in the previous phase
4. Semantic optimization of the local queries

1. The local queries are transformed by considering the integrity constraint
rules at both intra- and inter-sources level

5. Local query execution
1. local queries are sent to the wrappers to be translated and executed by

the local sources
6. Mediated query execution



1. for each Base Extension object fusion of the local queries results is per-
formed

2. the union of the results of the queries identified in the previous phase is
performed

1. Semantic optimization of the mediated query This optimization can
be performed if some integrity constraint rule at inter-sources level are available.
In this case, the query can be transformed by considering the integrity rules. For
example, let us consider the following query:

Q1: select name
from University_Person X
where X.rank = ’graduate’
and X.tax_fee < 200

If the following integrity rules is available:

rule Rule4 forall X in University_Person:
X.rank = ’graduate’ then (X.tax_fee <100)

then the factor (X.tax fee < 200) can be eliminated from the query Q1. Notice
that to perform semantic optimization of the mediated query we need to use the
mapping table. In fact, the mediated query refers to a global class (global at-
tributes) and intra-sources integrity constraint rules refers to local classes (local
attributes).

2. Determination of the Local Class Set In order to determine the local
classes for query reformulation we first add to the original query a non-null
condition on the select clause attributes; for the query Q we have:
Q: select e_mail

from University_Person
where school = ’cs’
and (s_code = ’a1x’ or year = ’2001’ or tax_fee < 200)
and e_mail is not null

then we consider the Disjunctive Normal Form - DNF of the query condition:
DNF = F1 or F2 or F3 where:

F1 = (school=’cs’) and (s code=’a1x’) and (e mail is not null)
F2 = (school=’cs’) and (tax fee<200)and (e mail is not null)
F3 = (school=’cs’) and (year=’2001’)and (e mail is not null)

For each factor F of DNF we define the set: BE(F ) = {B | ∀ ga of F, ga ∈
A(B)}, i.e., B ∈ BE(F ) iff A(B) contains all the global attributes of the factor
F . In our example:

– BE(F1) = BE(F3) = {BE1, BE2, BE3}
– BE(F2) = ∅



Intuitively, a factor F of DNF such that BE(F ) = ∅ can be eliminated as
the value of F is always false. In our example, we obtain a simplified DNF =
F1 or F3.

On the basis of this simplification, we obtain the following result: we do not
have to access the local classes UNI.Research Staff and CS.Professor as the
only predicate related to their attributes (tax fee<200) has been eliminated.

In the presence of more complex queries and a large set of extensional rela-
tionships the optimization results that can be obtained by using base extensions
can be effective. Furthermore, in some cases, as:

Q: select email from University_Person
where school = ’cs’ and section = ’info1’

we have BE(F ) = ∅, that is an empty answer (no access to the sources).
Local classes are determined by considering the union of all the local classes

included in a subset of the previously evaluated base extensions obtained by
eliminating the dominated ones. Indeed, the concept of domination as introduced
in Def. 4 can be applied w.r.t. the global attributes of each factor F for which we
compute BE(F ). With reference to our example, we have BE(F1) = BE(F3) =
{BE1}, as BE1 dominates both BE2 and BE3; as a consequence the identified
local classes are: { TP.Student, UNI.School Member }. Notice that the classes
CS.Student and CS.CS Person are excluded from query execution too: they are
useless as their objects are also instances of other local classes (as, for instance,
stated by CS.Student NTExt UNI.School Member) and their contributions to
the query, that is attributes school and e mail, are already provided by the
identified local classes.

As to summarize, the result of this phase are: a simplified Mediated Query,
a set of base extensions and, then, a Set of Local Classes.

3. Query Reformulation Query reformulation is based on the base extensions
selected in the previous phase. First, for each pair of local classes belonging to the
same base extension the related join attributes are considered. In our example,
we have only a base extension, BE1, then the local classes are TP.Student and
UNI.School Member and the join attribute is name for both the classes. Then, we
consider the simplified DNF obtained in the previous phase and, for each factor
F , we build a local query for each local class of BE(F ).

QL: select <select-list> from L
where <condition>

in two steps:

1. <condition> is the conjunction of all predicates of the factor F which can
be solved in the local class L (at least one predicate since L∈ BE(F )); these
predicates are rewritten w.r.t. the attributes of local class L on the basis of
the mapping table. In our example, for factor F1 and the class TP.Student we
have <condition> = (school name=’cs’)and(s code=’a1x’)and(e mail



is not null) whereas for the class UNI.School Member we have <condition>
= (school=’cs’) and (e mail is not null). Note that, the same predi-
cate may be mapped into semantic homogeneous attributes of more than one
class. From a theoretical point of view, such a multiple mapping introduces
no problem as semantic homogeneous attributes have been individuated in
the integration activity; on the other hand, from an optimized execution
point of view only some classes supporting such a predicate could be se-
lected according to cost (either financial or computational) criteria.

2. <select-list> is obtained by adding to the query select clause all the join
attributes.

In our example, we have two local queries:

QF1L1: select e_mail, name QF1L2: select e_mail, name
from TP.Student from UNI.School_Member
where (school_name=’cs’) where (school = ’cs’)
and (s_code=’a1x’) and (e_mail is not null)
and (e_mail is not null)

4. Semantic optimization of the local queries The local queries are trans-
formed, first, by considering the inter-sources integrity constraint rules and, then
by considering the intra-sources ones.

By considering the integrity constraint rules at inter-sources level, the sub-
sumption relationships between local queries are computed: if a local query QL1

is subsumed by a local query QL2 and the select attributes of QL1 are a subset
of the select attributes of the query QL2 thus it is not necessary to execute the
local query QL1. For example, by applying rule Rule2, we obtain that the local
query QF1L2 is subsumed by the local query QF1L1. In this case we avoid the
QF1L2 execution as its select clause attributes coincide with those of QF1L1.

For each source a local semantic query optimization is performed by consid-
ering, for each local query, the intra source integrity constraint rules. Note that
this kind of optimization is independent from the physical organization of data
of a source as our techniques are independent from any specific cost model.

5. Local Query Execution Local queries are sent to the wrappers to be
translated and executed by the local sources.

6. Mediated Query Execution The first step of the Mediated Query Exe-
cution is the object fusion of the local query results belonging to the same base
extension; this is implemented by a query, called object fusion query, which is
performed for each factor and each base extension previously individuated.

In our example, for factor F1 we have only the base extension BE1 and the
object fusion of QF1L1 and QF1L2 is based on the direct–join on the join attribute
name, thus we obtain the following object fusion query:



QF1BE1: select e_mail
from QF1L1,QF1L2
where QF1L1.name=QF1L2.name

of course, all the object fusion queries have the same <select-list>.
The second and last step of the Mediated Query Execution is the union of the

object fusion queries. In our example, the outcome is the union between QF1BE1
and QF3BE1, that is the analogue of QF1BE1 for factor F3 and BE1.

5 Conclusions

In this paper we proposed tool-supported techniques to query global information
systems. The techniques are under development in the environment of a data
integration, wrapper/mediator based system, MOMIS, and try to achieve the
goal of: optimized query reformulation w.r.t local sources.

The techniques rely on the availability of integration knowledge, whose seman-
tics is given in terms of description logics. Integration knowledge includes: local
sources schemata, a virtual mediated schema and its mapping descriptions, that
is semantic mappings w.r.t. the underlying sources both at the intensional and
extensional level, extensional intra/inter-schema knowledge. Extensional knowl-
edge is exploited to perform semantic query optimization in a mediator based
system as it allows to devise an optimized query reformulation method. The
method is based on base extensions and description logics inference techniques.
In particular, base extensions permit to transform a query on the basis of the
extensional relationships between classes, whereas, semantic query optimization
techniques are used to transform the query on the basis of the intra- and inter-
sources integrity constraint rules.

References

1. Y. Arens, C.Y. Chee, C. Hsu, and C. A. Knoblock. Retrieving and integrating
data from multiple information sources. International Journal of Intelligent and
Cooperative Information Systems, 2(2):127–158, 1993.

2. Y. Arens, C. A. Knoblock, and W. Shem. Query reformulation for dynamic infor-
mation integration. Journal of Intelligent Information Systems (JIIS), 6(1):99–130,
1996.

3. I. Benetti, D. Beneventano, S. Bergamaschi, A. Corni, F. Guerra, and G. Malvezzi.
Si-designer: a tool for intelligent integration of information. Int. Conference on
System Sciences (HICSS2001), 2001.

4. D. Beneventano, S. Bergamaschi, S. Castano, A. Corni, R. Guidetti, G. Malvezzi,
M. Melchiori, and M. Vincini. Information integration: The momis project demon-
stration. In VLDB 2000, Proc. of 26th International Conference on Very Large
Data Bases, 2000, Egypt, 2000.

5. D. Beneventano, S. Bergamaschi, F. Guerra, M. Vincini, and M. Vincini. Exploiting
extensional knowledge for a mediator based query manager. In Convegno Nazionale
su Sistemi Evoluti per Basi di Dati - SEBD2001, Venezia, 2001.



6. D. Beneventano, S. Bergamaschi, S. Lodi, and C. Sartori. Consistency checking in
complex object database schemata with integrity constraints. IEEE Transactions
on Knowledge and Data Engineering, 10:576–598, July/August 1998.

7. D. Beneventano, S. Bergamaschi, C. Sartori, and M. Vincini. ODB-QOPTIMIZER:
A tool for semantic query optimization in oodb. In Int. Conference on Data En-
gineering - ICDE97, 1997. http://sparc20.dsi.unimo.it.

8. S. Bergamaschi, S. Castano, D. Beneventano, and M. Vincini. Semantic integration
of heterogenous information sources. Journal of Data and Knowledge Engineering,
36(3):215–249, 2001.

9. T. Catarci and M. Lenzerini. Representing and using interschema knowledge in co-
operative information systems. Journal of Intelligent and Cooperative Information
Systems, 2(4):375–398, 1993.

10. R. G. G. Cattell, editor. The Object Database Standard: ODMG93. Morgan Kauf-
mann Publishers, San Mateo, CA, 1994.

11. O. M. Duschka and M. R. Genesereth. Answering recursive queries using views.
In Proc. of the Sixteenth ACM SIGMOD Symposium on Principles of Database
Systems, 1997.

12. S. Gnanaprakasam E. Lambrecht, S. Kambhampati. Optimizing recursive
information-gathering plans. In Proceedings of the International Joint Conference
on Artificial Intelligence, IJCAI 99, 1999.

13. R. Hull and R. King et al. Arpa i3 reference architecture, 1995. Available at
http://www.isse.gmu.edu/I3 Arch/index.html.

14. Z. G. Ives, D. Florescu, M. Friedman, A. Y. Levy, and D. S. Weld. An adaptive
query execution system for data integration. In Proc. ACM SIGMOD Int. Conf.
on Management of Data, USA, 1999.

15. C.A. Knoblock J.L. Ambite. Flexible and scalable query planning in distributed
and heterogeneous environments. In Proc. of the 4th Int. Conf. on Artificial Intel-
ligence Planning Systems. AAAI, 1998.

16. Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object fusion in me-
diator systems. In VLDB Int. Conf., Bombay, India, September 1996.

17. Y. Papakonstantinou, A. Gupta, and L. M. Haas. Capabilities-based query rewrit-
ing in mediator systems. Distributed and Parallel Databases, 6(1):73–110, 1998.

18. R. Pottinger and A. Y. Levy. A scalable algorithm for answering queries us-
ing views. In VLDB 2000, Proceedings of 26th International Conference on Very
Large Data Bases, September 10-14, 2000, Cairo, Egypt, pages 484–495. Morgan
Kaufmann, 2000.

19. M.T. Roth and P. Scharz. Don’t scrap it, wrap it! a wrapper architecture for legacy
data sources. In Proc. of the 23rd Int. Conf. on Very Large Databases, Athens,
Greece, 1997.

20. I. Schmitt and C. Türker. An Incremental Approach to Schema Integration by Re-
fining Extensional Relationships. In G. Gardarin, J. French, N. Pissinou, K. Makki,
and L. Bougamin, editors, Proc. of the 7th ACM CIKM Int. Conf. on Informa-
tion and Knowledge Management, November 3–7, 1998, Bethesda, Maryland, USA,
pages 322–330, New York, 1998. ACM Press.

21. R. Yerneni, Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Fusion
queries over internet databases. In Advances in Database Technology - EDBT’98,
6th International Conference on Extending Database Technology, volume 1377 of
Lecture Notes in Computer Science, 1998.


