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Abstract: Aging is one of the hallmarks of multiple human diseases, including cancer. We 

hypothesized that variations in the number of copies (CNVs) of specific genes may protect some 

long-living organisms theoretically more susceptible to tumorigenesis from the onset of cancer. 

Based on the statistical comparison of gene copy numbers within the genomes of both cancer-prone 

and -resistant species, we identified novel gene targets linked to tumor predisposition, such as 

CD52, SAT1 and SUMO. Moreover, considering their genome-wide copy number landscape, we 

discovered that microRNAs (miRNAs) are among the most significant gene families enriched for 

cancer progression and predisposition. Through bioinformatics analyses, we identified several 

alterations in miRNAs copy number patterns, involving miR-221, miR-222, miR-21, miR-372, miR-

30b, miR-30d and miR-31, among others. Therefore, our analyses provide the first evidence that an 

altered miRNAs copy number signature can statistically discriminate species more susceptible to 

cancer from those that are tumor resistant, paving the way for further investigations. 
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1. Introduction 

Aging is considered one of the risk factors of cancer insurgence due to the mutational 

burden derived from cell division and DNA replication [1]. Therefore, it is probable that, 

in order to maintain a high longevity rate, those organisms that live longer should 

theoretically possess a higher risk of cancer occurrence. Nevertheless, considering 

different species, according to Peto’s Paradox theory [2], the body size of an organism 

and/or its lifespan expectation are not directly correlated with the species percentage of 

cancer incidence. After more than 40 years of research, the solution to this puzzling 

paradox is still an open challenge to be solved. For example, despite its small size, the 

naked mole rat is, to date, the longest-living member of the rodent family, being able to 

live more than 30 years. Several studies highlighted that, besides the delayed aging, this 

species also shows the capacity to resist spontaneous and experimentally induced 

tumorigenesis [3–6]. Conversely, in some other rodents, the cancer-related mortality can 

reach 90%, coupled with a species maximum life expectancy of 4–5 years [7]. The long-

living Myotis lucifugus bat species has been recently identified as a prospective organism 

for comparative cancer research [8]. Given their extended life-span rates [9], it has been 

suggested that bats develop a very low number of cancer events, as confirmed by different 

pathological studies performed in different areas of the world [10,11]. The elephant has 
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been pinpointed as another cancer-resistant species [12], with a cancer incidence rate 

considerably lower compared to the human one, for example (approximately 22%) [13]. 

In order to maintain a high longevity, some species might have developed intrinsic 

molecular mechanisms that protect them from cancer onset or development [14]. 

Interestingly, various authors recently reported that the genome of the African elephant 

encodes multiple copies of the TP53 gene, also known as the “guardian of the genome 

stability”. This amplification could be at the basis of the elephant's anti-cancer and 

longevity mechanisms by leading to increased levels of apoptosis in response to DNA 

damage [12,15]. Indeed, according to Caulin and Maley (2011) [16], the genome of large 

long-living organisms can reveal an altered number of tumor suppressors and oncogenes 

(in multiple or reduced copies), which might represent a possible mechanism underlying 

their capacity of exceeding the threshold of cancer onset, despite their phenotypic 

predisposition due to body size and longevity [16]. Copy number variations (CNVs) are 

duplications or deletions of genomic regions which can be associated with phenotypic 

alterations, including tumorigenic diseases [17]. In particular, a variation in the gene copy 

numbers can influence the activity of tumor suppressors and oncogenes, leading to the 

development of cancer [18]. Within this framework, long-living animals have to rely on 

compensatory mechanisms to suppress and prevent cancer progression, which can be 

straightened by different molecular and genomic mechanisms such as altered gene copy 

numbers that increase the number of tumor suppressors paralogues or reduce copies of 

oncogenes [19,20]. As previously mentioned, mammals have evolved lifespan and cancer 

incidence rates that vary among species [21], but the mechanisms underlying these 

differences are still unclear. In order to test the hypothesis that genomic CNVs are related 

to the cancer incidence rate of a species, we compared the genome-wide copy number 

landscapes of nine different mammals (five cancer-resistant and four cancer-prone 

species) and identified the target genes that can significantly discriminate between these 

two groups. Contrary to what is usually done, we did not use an a priori list of cancer-

related genes but included all human genes in our analysis dataset. In this way, we were 

able to identify miRNAs, usually removed from evolutionary comparative analyses, as 

the most enriched elements able to discriminate those organisms that are predisposed to 

cancer from those that are not. 

2. Materials and Methods 

2.1. Data Collection 

According to the hypothesis that positively selected CNVs tend to recur during 

cancer progression [22,23], but also during the evolution [24], we have recently developed 

the VarNuCopy database, a unique database that collects the CNVs landscape for multiple 

organisms, with the aim to compare patterns of copy number changes across the genome 

of different species [25]. We used a homemade script written in Perl 5.14 and Python 3 in 

order to download the CNV data from Ensembl comparative genomics resources 

(http://www.ensembl.org accessed on 1 March 2019) [26], an ideal system to perform and 

support vertebrate comparative genomic analyses, given the consistency of gene 

annotation across the genomes of different vertebrate species. We leveraged Ensembl's 

“gene gain/loss tree” feature, which displays the number of copies of extant homologous 

genes for each species in a taxonomic tree view [27]. These data are estimated through 

CAFE (Computational Analysis of gene Family Evolution), a computational tool 

commonly used to study gene family evolution, which takes into account a priori the 

species phylogenetic tree [27,28]. The Perl API script provided by the Ensembl website 

was used to access the genomic databases and used to download all the available CNVs 

data. We encoded a new homemade Python script to arrange the CNVs data counts in a 

readable tab-delimited format and used this matrix to perform the subsequent analysis. 
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2.2. Statistical Comparison 

Using a comparative approach, we analyzed the variation landscape of the gene 

copies among the genomes of nine organisms sub-set in two categories: “cancer resistant” 

(Heterocephalus glaber (Hg), Nannospalax galili (Ng), Dasypus novemcinctus (Dn), Loxodonta 

africana (La) and Myotis lucifugus (Ml)) and “cancer prone” (Mus musculus (Mm), Rattus 

norvegicus (Rn), Canis familiaris (Cf) and Homo sapiens (Hs)) species (Supplementary Table 

S1). We classified as “cancer resistant” those species that, based on the literature review, 

are known to possess a low cancer incidence rate. Conversely, “cancer prone” organisms 

are those species for which the percentage of tumors found in a certain number of 

necropsies is known to be high. 

Cancer incidence rate data were collected from different recently published literature 

[4–6,8,10–12,15,21,29–33]. We performed a statistical comparison between the CNVs of the 

two different species groups, cancer-prone and -resistant organisms, with the aim to 

identify new possible gene targets able to discriminate between the two categories. Thus, 

a statistical unpaired two-group Wilcoxon test was performed using R.3.1.1(R Foundation 

for Statistical Computing, Vienna, Austria), to compare their entire CNV spectra. To 

determine whether microRNAs CNVs independently contribute to the variation in cancer 

incidence percentages among our species, we applied a linear regression model through 

the PGLS R package [34], in order to check for potential bias due to species phylogeny or 

population structure (Figure 1D). The phylogenetic tree included in the analysis was 

derived from VertLife [35] and created and visualized through the Interactive Tree of Life 

web-tool (Figure 1C) [36]. Data processing and statistical tests were performed with 

R.3.1.1. Figures were made using the ggplot2 R package, in association with different R 

Shiny apps such as BoxPlotR, PlotsOfData, ClustVis, and miRTargetLink 2.0 [37–40]. 

2.3. Pathways Analysis 

To determine if the CNVs are enriched in specific gene families, we used Gene SeT 

AnaLysis Toolkit, a tool for the interpretation of lists of interesting genes that is commonly 

used to extract biological insights from targets of interest [41]. The set of significant genes 

were tested for pathway associations using the hyper-geometric test for over-

representation analysis (ORA) [42] (Supplementary Table S4). We selected different 

pathway enrichment categories (KEGG: https://www.genome.jp/; Wikipathway: 

https://www.wikipathways.org; Reactome: https://reactome.org/; PANTHER: 

http://www.pantherdb.org/ accessed on 1 June 2019), considering as over-represented 

those molecular networks with an FDR significance level lower than 0.05, after a 

correction with the Benjamini–Hochberg method. In this context, the ORA analysis was 

the preferred option among the others (e.g., gene set enrichment or network topology-

based analysis) in order to obtain biological information underlying the significantly 

enriched genes, resulting in a reduction in the complexity of the data interpretation [42]. 
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Figure 1. CNV landscape comparisons: (A) Boxplot of the distribution of significant gene CNVs in cancer-prone vs. cancer-resistant species. (B) 

Boxplot of the distribution of significant microRNA CNVs in cancer-prone vs. cancer-resistant species. Cancer-resistant species are highlighted in 

green, cancer-prone species in red. In the boxplots, the Y-axis scale has been changed to log one. The boxplots were built considering the average 

number of copies of each gene in the two different target groups. (C) Heatmap representing the microRNA CNV repertoires within the nine analyzed 

species—(Hg): Heterocephalus glaber; (Ng): Nannospalax galili; (Dn): Dasypus novemcinctus; (La): Loxodonta Africana; (Ml): Myotis lucifugus; (Mm): Mus 

musculus; (Rn): Rattus norvegicus; (Cf): Canis familiaris; (Hs): Homo sapiens. Hg, Ng, Dn, La and Ml have been previously described as cancer-resistant 

species. Mm, Rn, Cf and Hs are known to be cancer-prone species. Phylogeny was inferred from VertLife [35], created and visualized through the 

Interactive Tree of Life web-tool [36]. (D) PGLS correlating the cancer incidence rate with the total number of significant microRNAs copies across 

the nine species included in the analysis. The blue line represents a positive correlation between the two variables (adjusted R2 = 0.5173; p-value = 

0.01746). 
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3. Results 

A two-group comparison was performed using a Wilcoxon rank sum test, in order to 

identify an existing distinction in the distribution of the number of gene copies between 

cancer-prone and cancer-resistant species. A list of the most significant hits (p-value < 0.05), 

including known tumor suppressors and oncogenes, is reported in Table 1 (see 

Supplementary Table S2-S3 for the extended version). Our analysis, which exclusively 

considered the variation in number of gene copies among different species, was able to 

identify those genes involved in biological processes related to cancer development and 

maintenance. 

Table 1. Genomic CNV landscape comparisons. Subset of 25 significant hits resulting from the 

unpaired 2-group Wilcoxon test (p-value < 0.05). The statistical comparison was made in order to 

identify those genes able to discriminate between the cancer-prone and -resistant species groups, 

relying exclusively on the genomic copy number values. Some of these genes are already known to 

be tumor suppressor and/or oncogenes, whereas the others can play pivotal roles in tumorigenesis 

events, and, for this reason, can be considered as targets to be further investigated and validated in 

the context of cancer development. 

Gene p-Value Known_TS Known_OG References 

CD52 0.007 NO NO [43] 

SAT1 0.007 NO NO [44] 

MIR424 0.009 YES NO [45] 

MIR372 0.010 NO YES [46,47] 

DMD 0.014 YES NO [48] 

EIF5 0.017 NO NO [49] 

MIR107 0.022 YES YES [50,51] 

MIR124-1, MIR124-2, MIR124-3 0.022 YES NO [52] 

SUMO2, SUMO3, SUMO4 0.024 NO NO [53,54] 

MIR506 0.029 YES YES [55] 

MIR509-1 0.029 NO NO [56] 

MIR511 0.029 YES NO [57] 

MIR514A1, MIR514A3, MIR514B 0.029 NO NO [58] 

MIR378A 0.030 YES NO [59] 

S100A16 0.030 NO NO [60] 

MBD1, MBD2, MBD3 0.031 NO YES (MDB1) [61] 

FGFBP1 0.032 NO NO [62] 

FOXJ1 0.032 NO NO [63] 

MIR1-1, MIR1-2 0.032 YES NO [64] 

MIR206 0.032 YES NO [65] 

MIR340 0.032 YES NO [66] 

MIR542 0.032 NO NO [67] 

NUPR1 0.032 YES NO [68] 

SELENOW 0.032 NO NO [69,70] 

JUND 0.034 NO YES [71] 

3.1. Best Candidate Cancer-Related Genes 

The distribution of the average number of each gene copies plotted in Figure 1A 

highlights a difference between the two species categories, which appears even greater if 

we only refer to the microRNAs CNVs landscape (Figure 1B). Among the most significant 

genes presenting an altered number of copies, we found CD52 (p-value = 0.007), SAT1 (p-

value = 0.007), DMD (p-value = 0.014), EIF5 (p-value = 0.017), SUMO2, SUMO3, SUMO4 

(p-value = 0.024), S100A16 (p-value = 0.030), MBD1, MBD2, MBD3 (p-value = 0.031), 
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FGFBP1 (p-value = 0.032), FOXJ1 (p-value = 0.032), NUPR1 (p-value = 0.032), SELENOW 

(p-value = 0.032) and JUND (p-value = 0.034). Some of these, such as DMD, MDB1, NUPR1 

and JUND, have been already well described as tumor suppressors or oncogenes 

[47,60,67,70], whereas the others do not officially belong to any of these two categories and 

they have been proposed as key regulators in biological processes such as cell proliferation, 

migration and cancer development and progression [42,43,48,52,53,59,61,62,68,69]. A 

Principal Component Analysis (PCA) of the CNV values of the nine species reported in 

Figure 2A,B showed a clear dichotomy between the cancer-prone and -resistant groups, 

supporting the hypothesis that an altered CNV landscape is able to discriminate between 

the two categories. To confirm these results, we performed another unsupervised clustering 

analysis using Euclidean distance (Figure 2C). 

 

Figure 2. (A) PCA based on the CNVs of all the significant genes. (B) PCA based on the CNVs of the 

significant microRNAs subset. Both plots show a dichotomy between cancer-resistant (blue) and 

cancer-prone species (red). (C) Heatmap of the significant microRNAs, clustered with Euclidean 

distance and complete linkage. (D,E) Bar and box plots of the significant microRNAs CNVs in 



Genes 2022, 13, 1046 7 of 16 
 

 

cancer-prone species, cancer-resistant species and Loxodonta africana. The microRNAs repertoire of 

Loxodonta africana seems to reflect the cancer-prone miRNAs copy number alteration landscape, 

rather than the one typical of the cancer-resistant organisms. In the box plots, the Y-axis scale was 

changed to log one. The boxplots are built considering the average number of copies of each gene 

in the two different target groups. 

As depicted in the heatmap, each cluster has a distinct set of copy number values, 

and the main branches representing cancer-prone and -resistant organisms perfectly 

distinguish the two groups. No additional information (other than copy numbers) was 

given to the algorithm. In addition, we applied the Euclidean distances, using both the 

‘complete’ and ‘ward’ methods (criteria that direct how the subclusters are merged) 

(Supplementary Figure S2-S4)). Remarkably, using this method, the Loxodonta africana 

microRNAs CNV landscape seems to have a different pattern as compared to the other 

cancer-resistant species (Figure 2C), confirming the elephant as an outlier species of the 

cancer-resistant group (see Section 4). 

3.2. Cancer-Related MicroRNAs Pathways Are among the Most Significantly Enriched 

Biological Families 

Our analysis shows an enrichment of onco-miRNAs amplifications in the cancer-

prone species group. In particular, miR-424 (p-value = 0.009), miR-372 (p-value = 0.010), 

miR-107 (p-value = 0.022), miR-124 (p-value = 0.022), miR-506 (p-value = 0.029), miR-511 

(p-value = 0.029), miR-378A (p-value = 0.030), miR-1 (p-value = 0.032), miR-206 (p-value = 

0.032) and miR-340 (p-value = 0.032) are few examples of the most significant microRNA 

hits, which possess a suppressor and/or oncogenic role (Figure 1C). Given the high 

diversity among our species, we used the generalized least squares (PGLS) phylogenetic 

method [34] in order to assess whether copy number and cancer incidence rates evolved 

in a dependent manner along the tree, or if their relationship might be the consequence of 

common ancestry, resulting in similar patterns of miRNAs copy number alteration. 

Indeed, taking into account the genetic structure of the population, the PGLS comparative 

method confirmed the association between these traits independently of the shared 

evolutionary history of the species (Figure 1D and Supplementary File S1). 

3.3. ORA Analysis Confirms a Significant Enrichment in the miRNAs Gene Family 

We performed an Over-Representation Analysis (ORA) [41] on the complete list of 

significant genes, in order to identify enriched functional categories potentially related to 

cancer (Table 2 and Supplementary Figure S1). The most enriched pathways outputted by 

the ORA analysis were “MicroRNAs in cancer”, “miRNAs involved in DNA damage 

response”, “Metastatic brain tumor”, “miRNA targets in ECM and membrane receptors'', 

“let-7 inhibition of ES cell reprogramming” and “miRNAs involvement in the immune 

response in sepsis” [72,73]. These results indicate that the genes more prone to CNVs were 

those encoding miRNAs involved in cancer initiation, chronic inflammation and immune 

response. Remarkably, performing the ORA analysis applying the PANTHER algorithm 

[74], we also found a significant enrichment in the “Cadherin signaling network”, which 

is a well-known molecular pathway described as a key player in cancer [75]. 
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Table 2. Pathway analysis. Gene Over-Representation Analysis (ORA) using KEGG, PANTHER and 

Wikipathway. The enrichment test used Benjamini–Hochberg's FDR correction (FDR < 0.05). CNV 

data were previously analyzed by an unpaired 2-group Wilcoxon test (p-value < 0.05). Significant 

genes altered in their number of copies within the entire genomic landscape were used to perform 

the ORA analysis, which highlighted a significant enrichment in microRNAs and cancer-related 

pathways. 

 Description FDR (BH) Genes 

KEGG 

MicroRNAs in cancer 0 

MIR103A1; MIR103A2; MIR107; MIR124-1; MIR124-2; MIR124-

3; MIR1-1; MIR1-2; MIR206; MIR100; MIR10A; MIR10B; 

MIR129-1; MIR129-2; MIR15A; MIR15B; MIR193B; MIR199A1; 

MIR199A2; MIR199B; MIR203B; MIR21; MIR223; MIR31; 

MIR99A; MIRLET7A1; MIRLET7A3; MIRLET7F2; MIR29B1; 

MIR29B2; MIRLET7G; MIRLET7I; MIR221; MIR222; MIR23A; 

MIR23B; MIR27A; MIR27B; MIR30C1; MIR30C2; MIR30A; 

MIR30B; MIR30D; MIR30E. 

Taste transduction 3.16 × 10-10 

TAS2R10; TAS2R13; TAS2R14; TAS2R19; TAS2R20; TAS2R3; 

TAS2R30; TAS2R31; TAS2R42; TAS2R43; TAS2R45; TAS2R46; 

TAS2R50; TAS2R7; TAS2R8; TAS2R9 

Progesterone-mediated 

oocyte maturation 
2.43 × 10-4 

SPDYE1; SPDYE11; SPDYE16; SPDYE17; SPDYE2; SPDYE2B; 

SPDYE3; SPDYE4; SPDYE5; SPDYE6; INS 

Oocyte meiosis 2.73 × 10-4 
PPP3R2; SPDYE1; SPDYE11; SPDYE16; SPDYE17; SPDYE2; 

SPDYE2B; SPDYE3; SPDYE4; SPDYE5; SPDYE6; INS 

PANTHER 
Cadherin signaling 

pathway 
4.02 × 10-2 

PCDHB14; PCDHB7; PCDHGB1; PCDHB16; PCDHB6; 

PCDHGB4; PCDHGA6; PCDHGB6; PCDHGB7 

Wikipathway 

miRNAs involved in 

DNA damage response 
3.76 × 10-9 

MIR371A; MIR372; MIR542; MIR100; MIR15B; MIRLET7A1; 

MIR374B; MIR221; MIR222; MIR23A; MIR23B; MIR27A; 

MIR27B 

Alzheimers Disease 5.31 × 10-5 

MIR124-1; MIR124-2; MIR124-3; MIR10A; MIR129-1; MIR129-2; 

MIR199B; MIR21; MIR433; MIR671; MIR873; PPP3R2; MIR29B1; 

MIR30C2; MIR219A2 

Metastatic brain tumor 2.31 × 10-3 
MIRLET7A1; MIRLET7A3; MIRLET7F2; MIR29B1; MIR29B2; 

MIRLET7G 

miRNA targets in ECM 

and membrane receptors 
2.31 × 10-3 

MIR107; MIR15B; MIR30C1; MIR30C2; MIR30B; MIR30D; 

MIR30E 

MicroRNAs in 

cardiomyocyte 

hypertrophy 

2.77 × 10-3 
MIR103A1; MIR103A2; MIR140; MIR15B; MIR185; MIR199A1; 

MIR199A2; MIR23A; MIR27B; MIR30E 

Cell Differentiation - 

Index 
1.25 × 10-2 MIR1-1; MIR206; MIR199A1; MIR199A2; MIR221; MIR222 

let-7 inhibition of ES cell 

reprogramming 
1.25 × 10-2 MIRLET7A1; MIRLET7F2; MIRLET7G; MIRLET7I 

miRNAs involvement in 

the immune response in 

sepsis 

1.43 × 10-2 
MIR187; MIR199A1; MIR199A2; MIR203B; MIR223; MIR29B1; 

MIRLET7I 

Cell Differentiation - 

Index expanded 
2.38 × 10-2 MIR1-1; MIR206; MIR199A1; MIR199A2; MIR221; MIR222 

Role of Osx and miRNAs 

in tooth development 
3.35 × 10-2 MIRLET7A1; MIRLET7F2; MIR29B1; MIRLET7G; MIRLET7I 
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4. Discussion 

Being theoretically more susceptible to cancer, big and long-living species need 

additional cancer defense molecular mechanisms. On the other hand, short-living and 

small-size organisms might not need them because of their lower intrinsic predisposition 

to cancer due to their short lifespan rate. CNVs can therefore be considered one of the 

multiple protection ways against tumor insurgence that can explain Peto’s Paradox. In 

fact, we hypothesized that all cancer-resistant organisms implemented a series of 

molecular mechanisms to counteract their cancer predisposition, which depends on and 

derives from their own specific evolutionary history. We believe that CNVs that increase 

the onco-suppressive capacity of specific genes can be an excellent defense against tumor 

diseases in species at risk. Indeed, some authors have recently suggested that one of the 

most effective cancer-resistance strategies is represented by an augmentation in the 

number of copies of tumor suppressor genes [76]. In contrast, a reduced cancer-resistance 

rate could be caused by a selective loss of the same suppressor genes [77]. For instance, 

the CD52 gene (higher number of copies in the cancer prone group), a membrane 

glycoprotein expressed on the surface of mature lymphocytes, monocytes and dendritic 

cells, was one of the most significant hits of our analysis (p-value = 0.007). Recently, Wang 

and co-authors [43] identified CD52 as a key player in tumor immunity, affecting tumor 

behavior by regulating the associated tumor microenvironment. With the same significant 

p-value of 0.007, we also identified the SAT1 gene (higher number of copies in the cancer 

prone group) as one of the possible targets to be further investigated in the context of 

tumor onset. This gene can regulate and drive brain tumor aggressiveness, promoting 

molecular pathways that act in response to DNA damage and regulation of the cell cycle 

[44]. Another significant gene resulting from our analysis was represented by the SUMO 

protein family members (higher number of copies in the cancer resistant group). During 

cell cycle progression, many tumor suppressors and oncogenes are regulated via 

SUMOylation [78], a biological process that, if deregulated, can lead to genome instability 

and altered cell proliferation. In this context, it is evident that some tumors could be 

dependent on the functional SUMO pathway, but whether it is required for tumor growth 

remains to be established. For this reason, SUMO2, SUMO3 and SUMO4 can be 

potentially exploited in further anti-cancer mechanisms investigations (p-value = 0.024 in 

the present study), in order to shed light on the regulatory mechanisms underlying the 

activity of SUMO machinery in an oncogenic framework. Among the most significant hits, 

we also retrieved some genes that are already known to be tumor suppressors or 

oncogenes (DMD and JUND, respectively). Indeed, mutation or deregulated expression 

of Duchenne Muscular Dystrophy gene (DMD) is often linked to the development and 

progression of some major cancer types [48], such as sarcomas, carcinomas, melanomas, 

lymphomas and brain tumors [79,80], being a well-known tumor suppressor in different 

types of human cancers. On the other hand, JUND, a member of the AP-1 family that is 

related to MYC signaling pathway, regulates cell cycle and proliferation and its 

overexpression is linked to many types of cancers (PCA i.e.,) [71]. 

Notably, our results show that miRNAs are the most enriched gene family in 

discriminating between cancer-prone and cancer-resistant species. The specific role of 

these miRNAs is not yet fully understood, but we speculate that some of them might 

possess important regulatory functions aimed at defending some species (big size and 

long lifespan organisms) from cancer, while, at the same time, they are capable of 

exposing others to tumorigenesis (small-size and short-lifespan mammals). MicroRNAs 

(miRNAs) are small post-transcriptional molecular regulators that are able to modify gene 

expression levels, increasing the amount of mRNA degradation or inhibiting protein 

translation [81]. Since each single miRNA can regulate the expression of dozens of genes, 

many authors were able to correlate their activity with cell development, homeostasis and 

disease [82], including cancer [83,84]. Indeed, some tumorigenic events are caused by a 

malfunction in the heterogeneous regulatory activity of microRNAs inside the eukaryotic 

cells. Depending on the specific tissue and on the relationship with the immune system, 
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they can behave both as tumor suppressors and as oncogenes [85]. Furthermore, 

epigenetic factors and species genetic predisposition can drive their double-sided 

behavior, although some of them are evolutionarily conserved within vertebrate 

taxonomic families [86]. Several miRNAs have already been described in the literature as 

oncogenes and tumor suppressors. For example, miR-424 is known to be a human tumor 

suppressor that can inhibit cell growth enhancing apoptosis or suppressing cell migration 

[45]. MiR-372, instead, can participate in WNT cancer molecular pathway [46], whereas 

the overexpression of miR-107, mediating p53 regulation of hypoxic signaling, can 

suppress tumor angiogenesis and growth in mice [50]. MiR-1 is another example of tumor 

suppressor microRNA that has been previously found to be significantly down-regulated 

in squamous carcinoma cells [64]. MiR-30b and miR-30d are considered suppressors in 

tumors that do not affect immune cells, whereas they have been found to be upregulated 

in melanoma [87]. In a similar way and for the first time, our analysis revealed several 

miRNAs candidates that might be involved in a mammalian species cancer predisposition 

(Figure 1C). 

Interestingly, all the miRNAs that we have found show many more copies in the 

cancer-prone group as compared to the cancer-resistant species, and most of them are 

well-known oncogenes (miR-221, miR222, and miR-372, etc.). MiR-372, for instance, is not 

present in cancer-resistant species, whereas it shows multiple copies in those ones 

belonging to the cancer-prone group. This microRNA plays a pivotal role in the initiation 

of breast cancer and may activate the WNT and E2F1 pathways during the epithelial–

mesenchymal transition process [46,47]. We also found an amplification of miR-221 and 

miR-222 in the cancer-prone category. Previous literature has extensively described these 

two RNAs as oncogenes, being deregulated in primary brain tumors and in acute 

lymphoid leukemia, among other malignancies [88,89]. According to our results, 

surprisingly, cancer-prone species showed the amplification of miR-15 tumor suppressor, 

which is known to be able to regulate cancer proliferation initiation by targeting the BCL2 

gene [90,91]. Our hypothesis is that this apparent paradox may underlie a defensive role 

of this microRNA in those species that are, a priori, susceptible to tumor insurgence. On 

one hand, according to the so-called “gene dosage hypothesis”, gains or losses of specific 

gene copies can have a dramatic impact on the fitness of a species, leading to altered 

phenotypes due to the change in the expression levels of the affected genes [92]. On the 

other hand, oncogenes amplification or tumor suppressors deletions are not always 

detrimental, but can recapitulate tumorigenic events, being drivers or modulators of the 

disease [93]. As mentioned before, in fact, differences in ecology and evolutionary history 

are believed to give rise to significant differences between short- and long-living animals 

[94], and consequently in cancer-prone and -resistant species. In 2020, Tollis and co-

authors [20] showed that mammalian lifespan can be correlated to both suppressor gene 

and oncogene CNVs, a phenomenon that they themselves called "paradoxical". 

Interestingly, our analysis also leans in the same direction, suggesting that when high 

copy numbers of oncogenes shorten a lifespan, they must somehow be counterbalanced 

by higher number of copies of tumor-suppressor genes. 

In this framework, the elephant's miRNAs amplification signature resembles that of 

the organisms of the cancer-prone group (Figure 2D,E). In fact, it showed an alteration in 

the copy numbers of known oncogenes, such as miR-221 and miR-222, together with miR-

30b/d and miR-31. In our opinion, Loxodonta africana should be placed in a new category 

of organisms, which share both oncogenic and cancer-resistant characteristics, being also 

clustered as an outlier species of the cancer-resistant group (Figure 2B). During their 

evolution, elephants may have selected certain molecular mechanisms, such as the 

amplification of TP53 and pseudogenes [12,15], with the aim to defend their cells from the 

tumorigenic action of a high percentage of onco-miRNAs copy number amplification and 

high longevity. Consequently, an additional amplification in the number of tumor 

suppressor microRNAs would have not been sustainable/useful in terms of fitness and/or 

survival. The hypothesis is that species with bigger sizes and longer lifespans have an 
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expanded number of tumor-suppressor genes (TSGs), which is even higher than the one 

of their oncogenic counterparts. In this way, the direct elimination of oncogenes, which 

implies elevated costs in terms of growth and cellular functions maintenance, can be 

avoided, thus reducing the cancer incidence risk. In support of this, Vazquez and Lynch 

(2021) [76] reported that, within the Afrotheria order, the tumor-suppressor genes found 

in an altered number of copies were relatively lower compared to what might be expected. 

This finding can mirror the trade-off mechanism that natural selection has developed 

during evolution in order to compensate for the multi-copies effect that can lead to an 

increased risk of cancer, due to the unbalanced number of copies of the same genes. 

Indeed, long-living species might possess mechanisms that are capable of maintaining the 

equilibrium between proliferation and tumor control. Their regulatory networks can 

create positive feedbacks in which the amplification of tumor suppressor families 

functions as a buffer against the oncogene co-expansion, or vice-versa [20]. On the other 

hand, the cancer-prone organisms included in our analysis did not develop these gene 

defenses because they have a lower lifespan, which does not make them particularly 

exposed to a severe lack of fitness due to cancer progression (except in the case of Homo 

sapiens that has reached a high lifespan only recently, thanks to the advance of medicine 

treatments and health care). 

5. Limitations and Future Perspectives 

Gene duplication is a fundamental process that can lead to the emergence of new 

phenotypic traits. Analyzing patterns of gene copy number alterations across the genome 

of large and long-living organisms may reveal new insights about the mechanisms 

underlying cancer resistance in mammals [12,20,94]. Here, we have developed a simple 

way to test the hypothesis that CNVs confer protection or increase vulnerability to cancer 

among species. Using the absolute number of copies of each gene by species, we were able 

to identify, for the first time, an alteration in miRNA CNVs that are overrepresented and 

enriched in molecular pathways related to cancer. Further analyses will help to validate 

these findings by better defining the correlation between miRNAs and their targets. 

Nowadays, the current challenge is to develop and optimize new experimental design 

and strategies to be used in human [95] and veterinary biomedical research. Indeed, 

whenever a potential cancer-suppression mechanism is discovered in a species, there is 

the real possibility of identifying a new molecular target or therapeutic approach. 

Therefore, the investigation of genomic alterations, such as CNVs, can direct clinical 

research towards the discovery of new toolkits able to guide scientists towards the 

exploration of more focused research topics, such as, for example, specific microRNAs or 

their targets [96,97]. 
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