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Abstract. The NeP4B project aims at the development of an advanced
technological infrastructure for data sharing in a network of business part-
ners. In this paper we leverage our distinct experiences on semantic and
multimedia query routing, and propose an innovative mechanism for an ef-
fective and efficient unified data retrieval of both semantic and multimedia
data in the context of the NeP4B project.

1 Introduction and Related Work

Information and communication technologies (ICTs) over the Web have become
a strategic asset in the global economic context. The Web fosters the vision of an
Internet-based global marketplace where automatic cooperation and competition
are allowed and enhanced. This is the stimulating scenario of the ongoing Italian
Council co-funded NeP4B (Networked Peers for Business) Project whose aim is to
develop an advanced technological infrastructure for small and medium enterprises
(SMEs) to allow them to search for partners, exchange data and negotiate without
limitations and constraints.

According to the recent proposal of Peer Data Management Systems (PDMSs)
[5], the project infrastructure is based on independent and interoperable semantic
peers who behave as nodes of a virtual peer-to-peer (P2P) network for data and
service sharing. In this context, a semantic peer can be a single SME, as well
as a mediator representing groups of companies, and consists of a set of data
sources (e.g. data repositories, catalogues) placed at the P2P network’s disposal
through an OWL ontology. Data sources include multimedia objects, such as the
descriptions/presentations of the products/services extracted from the companies’
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Fig. 1. Reference scenario

Web sites. This information is represented by means of appropriate multimedia
attributes in the peers’ ontologies (e.g. image in Peerl’s ontology of Figure 1) that
are exploited in the searching process by using a SPARQL-like language properly
extended to support similarity predicates. As an example, let us consider the query
in Figure 1 which asks Peerl for “Companies that sell Italian tiles similar to the
represented one and that cost less than 30 euros”: the FILTER function LIKE is
used to search for images whose similarity with the image provided as argument is
greater than 0.3. Moreover, the query also specifies the number of expected results
in the LIMIT clause.

Each peer is connected to its neighbors through semantic mappings which are
exploited for query processing purposes: in order to query a peer, its own ontology
is used for query formulation and semantic mappings are used to reformulate the
query over its immediate neighbors, then over their immediate neighbors, and so
on [5,7]. For instance, in Figure 1 the concept origin translates into country
when the query is forwarded to Peer2.

In such a distributed scenario, where query answers can come from any peer
in the network which is connected through a semantic path of mappings [5], a key
challenge is query routing, i.e. the capability of selecting a small subset of relevant
peers to forward a query to. Flooding-based techniques are indeed not adequate
for both efficiency and effectiveness reasons: not only they overload the network
(forwarded messages and computational effort required to solve queries), but also
overwhelm users with a large number of results, mostly irrelevant.

Query routing in P2P systems has attracted much research interest in the last
few years, with the aim of effectively and efficiently querying both multimedia [1]
and semantic data [9]. As far as we know, no proposal exists which operates on
both these kinds of data in an integrated approach.

As part of the NeP4B project, we leverage our distinct experiences on semantic
[6, 8] and multimedia [3,4] query routing and propose to combine the approaches



we presented in past works in order to design an innovative mechanism for a unified
data retrieval in such a context. Two main aspects characterize our scenario. The
former one is due to the heterogeneity of the peers’ ontologies which may lead to
semantic approximations during query reformulation. In this context, we pursue
effectiveness by selecting, for each query, the peers which are semantically best
suited for answering it, i.e. whose answers best fit the query conditions. The latter
aspect is related to the execution of multimedia predicates, which is inherently
costly (they typically require the application of complex functions to evaluate the
similarity of multimedia features). In this setting, we also pursue efficiency by
limiting the forwarding of a query towards the network’s zones where potentially
matching instances are more likely to be found, while pruning the others. In this
way, we give the user a higher chance of receiving first the answers which better
satisfy the query conditions.

To this end, we introduce a query processing model which satisfies the interop-
erability demands highlighted in the NeP4B project. The proposed model does not
compel to a fixed semantics but rather it is founded on a fuzzy settlement which
proved to be sound for a formal characterization of the approximations originated
in the NeP4B network for both semantic [6] and multimedia data [10]. The model
leverages the query answering semantics (Sect. 2) to define a query routing ap-
proach which operates on both semantic and multimedia data in an integrated
way (Sect. 3), and to show how routing strategies (Sect. 4) influence the order
of the returned answers. This allows different query processing approaches to be
implemented, based on the specific consortium needs and policies. The validity
of the proposal is proved by the initial experiments we conducted on different
settings (Sect. 5).

2 Query Answering Semantics

The main aim of this section is to propose a semantics for answering queries
in the NeP4B network where two kinds of approximations may occur: the one
given by the evaluation of multimedia predicates, and the other one due to the
reformulation of queries along paths of mappings.

We denote with P the set of peers in the network. Each peer p; € P stores
local data, modelled upon a local OWL ontology O;. Peers are pairwise connected
in a semantic network through semantic mappings between peers’ ontologies. For
our query routing purposes, we abstract from the specific format that semantic
mappings may have. For this reason, we consider a simplified scenario where each
peer ontology O; is represented through a set of ontology classes {C;,, ..., Ci,., 15
and semantic mappings are assumed to be directional, pairwise and one-to-one.
The approach we propose can be straightforwardly applied to more complex map-
pings relying on query expressions as proposed, for instance, in [5]. Mappings
are extended with scores quantifying the strength of the relationship between the
involved concepts. Their fuzzy interpretation is given in the following.

5 Note that in OWL properties are specified through classes.



Definition 1 (Semantic Mapping). A semantic mapping from a source schema
O; to a target schema O;, not necessarily distinct, is a fuzzy relation M(O;, 0;) C
O, xO; where each instance (C,C") has a membership grade denoted as u(C,C") €
[0,1]. This fuzzy relation satisfies the following properties: 1) it is a 0-function,
i.e., for each C € Oy, it exists exactly one C' in O; such that u(C,C") > 0; 2) it
is reflexive, i.e., given O; = O, for each C € O; u(C,C) = 1.

For instance, Peerl of Fig. 1 maintains two mapping relations: the mappings to-
wards Peer2 (M (01, 03)) and Peer3 (M (O, O3)). For instance, M (01, Os) asso-
ciates Peerl’s concept origin to Peer2’s concept country with a score of 0.73, thus
expressing that a semantic approximation is detected between the two concepts
(for instance, the country might be only a part of an origin).

A query is posed on the ontology of the queried peer. Query conditions are
expressed using predicates that can be combined in logical formulas through logical
connectives, according to the syntax:

f = (triple_pattern){filter_pattern)
(triple_pattern) ::= triple | (triple_pattern) A (triple_pattern)
(filter_pattern) == ¢ | {filter_pattern) A (filter_pattern) |
(filter_pattern) V ( filter_pattern) | ({ filter_pattern))

where triple is an RDF triple and a filter ¢ is a predicate where relational (=, <,
>, <=, >=, #) and similarity (~;) operators operate on RDF terms and values.
In particular, note that ~; refers to multimedia content and translates the LIKE
operator where t is the specified similarity threshold.

Each peer receiving a query first retrieves the answers from its own local data
then it reformulates the query towards its own neighborhood.

The evaluation of a given query formula f on a local data instance ¢ is given
by a score s(f,4) in [0, 1] which says how much 7 satisfies f. The value of s(f,%)
depends on the evaluation on ¢ of the filters ¢1,..., p, that compose the filter-
pattern of f, according to a scoring function sfun,, that is: s(f(¢1,...,¢n), 1) =
sfung(s(pi1,4),...,5(n,1)). Note that filters are predicates of two types: rela-
tional and similarity predicates. A relational predicate is a predicate which eval-
uates to either 1 (true) or to 0 (false). The evaluation of a similarity predicate ¢
follows instead a non-Boolean semantics and returns a score s(p,4) in [0, 1] which
denotes the grade of approximation of the data instance ¢ with respect to ¢. It is set
to 0 when the similarity of ¢ w.r.t. the predicate value is smaller than the specified
threshold ¢, and to the grade of approximation measured, otherwise. The scoring
function sfun, combines the use of a t-norm (s,) for scoring conjunctions of fil-
ter evaluations, and the use of a t-conorm (sy) for scoring disjunctions. A t-norm
(resp., t-conorm) is a binary function on the unit interval that satisfies the bound-
ary condition (i.e. sp(s,1) = s, and resp., sy (s,0) = s), as well as the monotonicity,
the commutativity, and the associativity properties.® The use of t-norms and t-
conorms generalizes the query evaluation model with respect to the use of specific

8 Examples of t-norms are the min and the algebraic product operators, whereas exam-
ples of t-conorms are the max and the algebraic sum operators.



functions. Therefore, for a given peer p, the query answers retrieved from the eval-
uation of f on its own local data is given by Ans(f,p) = {(4, s(f,4)) | s(f,) > 0},
i.e., it is the set of local data instances which satisfy f, possibly with a certain
grade of approximation.

Due to the heterogeneity of schemas, any reformulation a peer p; performs
on a given query formula f towards one of its neighbors, say p;, gives rise to a
semantic approximation which depends on the strength of the relationship between
each concept in f and the corresponding concept in O;. Such an approximation is
quantified by a scoring function s fun. which combines the p;’s mapping scores on
f’s concepts: s(f,p;) = sfun.(u(C1,C1),...,u(Cy, C},)) where C1,. .., C,, are the
concepts in O; involved in the query formula, and C1, ..., C/, are the corresponding
concepts in O; according to M(O;,0;). sfun. is a t-norm as all the involved
concepts are specified in the triple_pattern of f and triples can only be combined
through conjunctions.

Starting from the queried peer, the system can access data on any peer in
the network which is connected through a semantic path of mappings. When
the query is forwarded through a semantic path, it undergoes a multi-step re-
formulation which involves a chain of semantic approximations. The semantic
approximation given by a semantic path p1 — ps — ... — p,, (in the fol-
lowing denoted as P,,. ,, ), where the submitted query formula f; undergoes
a chain of reformulations f; — fo — ... — f,,, can be obtained by composing
the semantic approximation scores associated with all the reformulation steps:
s(fhppl...pm) = sfun,(s(f1,p2),8(f2.p3), -, $(fm—1,Pm)), where sfun, is a t-
norm which composes the scores of query reformulations along a semantic path of
mappings.

Summing up, given a query formula f submitted to a peer p, the set of accessed
peers P’ = {p1,...,pm}," and the path P, ,, used to reformulate f over each
peer p; in P’, the semantics of answering f over {p} U P’ is the union of the
query answers collected in each accessed peer: Ans(f,p) U Ans(f, Py p,)U... U
Ans(f, Pp..p,, ) where each answer Ans(f, P,. p,) contains the set of the results
collected in the accessed peer p; together with the semantic approximation given
by the path Ppmpi: Ans(f7 PP--AZJi) = (Ans(fvpi)v S(.f7 Ppm)) As observed before,
as far as the starting queried peer is involved, no semantic approximation occurs
as no reformulation is required (i.e. s(f,p) = 1).

3 Query Routing

In this section we define a query routing approach which operates on both semantic
and multimedia data in an integrated way by first introducing the two approaches
separately and then by meaningfully combining them.

3.1 Semantic Query Routing

Whenever a peer p; selects one of its neighbor, say p;, for query forwarding, the
query moves from p; to the subnetwork rooted at p; and it might follow any of

" Note that P’ not necessarily covers the whole network (i.e., P’ C P).



the semantic paths originating at p;. Our main aim in this context is to introduce
a ranking approach for query routing which promotes the p;’s neighbors whose
subnetworks are the most semantically related to the query.

In order to model the semantic approximation of p;’s subnetwork w.r.t. p;’s
schema, the semantic approximations given by the paths in p;’s subnetwork are
aggregated into a measure reflecting the relevance of the subnetwork as a whole.
To this end, the notion of semantic mapping is generalized as follows. Let pf
denote the set of peers in the subnetwork rooted at pj, OJ4 the set of schemas
{0j,Ipj, € pi}, and Py,..p2 the set of paths from p; to any peer in p;. The
generalized mapping relates each concept C' in O; to a set of concepts C2 in
OjA taken from the mappings in Ppi___pﬁ, according to an aggregated score which
expresses the semantic similarity between C and C%.

Definition 2 (Generalized Semantic Mapping). Let p; and p; be two peers,
not necessarily distinct, and g an aggregation function. A generalized semantic
mapping between p; and p; is a fuzzy relation M(Oi,Of) where each instance
(C,C*) is such that: 1) C* is the set of concepts {C4,...,Cr} associated with C
in sz‘mp_? , and 2) /‘L(C7 CA) = g(/‘L(C, Cl)a s a:u'(Ca Ch))

The aggregation function g is a continuous function on fuzzy sets which satisfies
the monotonicity, the boundary condition, the symmetry and the idempotence
properties. Several choices are possible for g satisfying the above properties, for
instance functions such as the min, the max, any generalized mean (e.g. harmonic
and arithmetic means), or any ordered weighted averaging (OWA) function (e.g.
a weighted sum) [6].

Therefore, each peer p maintains a matrix named Semantic Routing Index
(SRI), which contains the membership grades given by the generalized semantic
mappings between itself and each of its neighbors Nb(p) and which is used as a
routing index. A portion of Peerl’s SRI of the reference example is shown below:

SRIpeer1  Tile origin company  price material  size image
Peerl 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Peer2 0.85 0.70 0.83 0.95 0.83 0.92 1.0
Peer3 0.65 0.85 0.75 0.86 0.95 0.74 1.0

Besides the first row, which represents the knowledge of Peerl’s local schema, it
contains two entries, one for the upward subnetwork rooted at Peer2, and one for
the downward one rooted at Peer3. For instance, from the stored scores, it follows
that Peer3’s subnetwork better approximates the concept origin (score 0.85) than
Peer2’s one (score 0.70). More details about the management of SRIs can be found
in [6].

Thus, when a peer p receives a query formula f, it exploits its SRI scores to
determine a ranking RE,, (f) for its neighborhood, so as to identify the directions
which best approximate f. More precisely, for each neighbor p; an overall score
is computed by combining, by means of the scoring function sfun., the scores
the SRI row SRI[p;] associates with the concepts C1,...,C, in f: RE, (f)[pi] =
sfunc(u(Cy,CP), ..., uw(Cr, C~)). Intuitively, the higher is the overall score, the



more likely the peer’s subnetwork will provide semantically relevant results to the
query.

3.2 Multimedia Query Routing

The execution of multimedia predicates is inherently costly, both from a CPU
and from an I/O point of view. Adopting a broadcast-based approach to solve
multimedia predicates in the network could thus imply wasting precious resources.
Instead, we introduce a routing mechanism for efficient similarity search in PDMS.
The approach can be exploited to solve most multimedia predicates as it has been
conceived for metric spaces. In a metric space, the similarity between two objects is
evaluated according to their pairwise distance: the lower their distance, the higher
their similarity. The key idea is to build a distributed index that provides a concise
but yet sufficiently detailed description of the multimedia resources available in
a given network area. This information is then used at query time to forward a
query containing multimedia predicates only towards those directions with the
highest number of potential matchings.

To this end, for a given peer p, for each multimedia object X in p’s local
dataset (e.g., an image), we extract one or more features. We represent each feature
F; of an object X as an element of a metric space and we denote it as X .
For each feature F;, each peer builds different feature indices, in order to allow
also for multi-feature queries. Each index exploits m reference objects R,fi, with
k = 1...m, i.e. objects that are used to determine the position of other objects
in the metric space. For ease of presentation, let us consider the case of a single
feature. For simplicity, we also drop the symbol F; from the following formulations,
and when there is no possibility of confusion we use the same symbol X for
indicating both the multimedia object and its associated metric feature. Formally,
if we consider distances from a reference object Ry in the interval [a,b], we select
h 4+ 1 division points a = ag < a1 < ... < ap = b such that [a,b] is partitioned
into h disjoint intervals [a;,a;41), ¢ = 0,1,...,h — 1. Given a peer p, for each
reference object Ry we build the histogram Featureldz (p) R,» Which measures the
number of objects X for which d(X, R) € [a;,a;4+1) Vi. This index gives us a
concise description of all the data owned by a peer and it represents how the
peer’s objects are distributed with respect to the reference object Ry.

Each peer p also maintains, for its neighborhood Nb(p), a set of Multime-
dia Routing Indices (MRIs), one for each reference object Rg. Any MRI row
MRI(p,pf) R, represents the aggregated description of the resources available in
the subnetwork p2 rooted at p; € Nb(p) and is built by summing up the index for
Ry, of the peers in the subnetwork.

MRI(p, piA)Rk = Featureldz (p;) g, + Z MRI(pi,pf)Rk (1)
p; ENb(p;)—p

As an example, consider the MRI of Peerl represented in the following table,
in which we give the number of the total objects in each subnetwork, for each
distance interval of the reference object R;.



MRIpeer: / RB1 [0.0,02)  [0.2,0.4) [0.4,06) [0.6,0.8) [0.8,1.0]

Peer2 8 29 1,300 145 2
Peer3 300 1,512 121 3 0

For our query routing purposes, we focus on similarity-based Range Queries
over metric objects, defined as follows: given the multimedia object  and the
range r specified as argument of any LIKE predicate, the query has to retrieve {X |
d(X,Q) < r}®. For a given range query, the values d(Q, Ry) —r and d(Q, Rg) +r
are computed, for each kK = 1,...,m. The vector representation of each query
index Queryldz(Q) g, 1s then built by setting to 1 all the entries that correspond
to intervals that are covered (even partially) by the requested range. All the other
entries are set to 0. This index has the same form of the histogram Featureldz (p) ,
but only contains values in {0,1}.

When a peer p receives a query formula f containing a LIKE predicate, instead
of flooding the network by forwarding f to all its neighbors, p matches the indices
of @ with the corresponding routing indices of its neighborhood. The matching
phase outputs a score that suggests the degree of relevance of the query with re-
spect to each of the possible forwarding directions. More precisely, p determines
a ranking RP,(f) for its neighborhood, by taking the minimum of the prod-
ucts (element by element) of the indices Queryldz(Q)g, and MRI(p,p;)p, for
each neighbor p; € Nb(p) = {p1,...,pn} and each reference object Ry, and then
evaluating the following ratio:

miny, [Queryldz(Q)g, - MRI(p, piA)Rk}

RP ;] =
o ()] 3ot ming [Queryldz(Q) . - MRI (p, pﬂA)Rk]

(2)

RE.(f)|p:] gives an intuition of the percentage of potential matching objects un-
derneath the subnetwork rooted at p; with respect to the total objects retrievable
through all the peers in Nb(p).

3.3 Combined Query Routing

Whenever a peer p receives a query, both the semantic and the multimedia routing
approaches associate each p’s neighbor a score quantifying the semantic relevance
and the percentage of potential matching objects in its subnetwork, respectively.
This allows p to rank its own neighbors w.r.t. their ability to answer a given query
effectively, i.e. minimizing the information loss due to its reformulation along
semantic mappings, and efficiently, i.e. minimizing the network load due to the
exploration of useless subnetworks.

Thus, since both the semantic and multimedia scores induce a total order,
they can be combined by means of a proper aggregation function in order to ob-
tain a global ranking. More precisely, given the two distinct rankings RP, (f) and
RP, . (f) computed for the query formula f on peer p we need an aggregation func-
tion @ which, when applied to R?,,.(f) and R?,. (f), provide a R?_ . (f) reflecting

sem comb

8 For ease of presentation, in the following we assume that each query formula f contains
at most one LIKE predicate.



the overall goodness of the available subnetworks: R (f) =« - RE, (f) & (-
RP,(f), where a and 3 can be set in order to give more relevance to either the
semantic or multimedia aspect.

In [2] it is stated that optimal aggregation algorithms can work only with
monotone aggregation function. Typical examples of these functions are the min
and mean functions (or the sum, in the case we are not interested in having
a combined grade in the interval [0,1]). As an example of how the aggregation
process works, let us go back to the sample query in Figure 1 and suppose Peerl
obtains the scores in the following table.

SRIPeerl MRIPeerl mln()
Peer2| 0.70 0.53 0.53
Peer3| 0.65 0.76 0.65

The rankings computed through SRI and MRI are Peer2-Peer3 and Peer3-
Peer2, respectively. If we use the standard fuzzy conjunction min, we compute the
following final ranking: Peer3-Peer2. As a result, the most promising subnetwork
will be the one rooted at neighbor Peer3.

The obtained ranking reflects the foreseen subnetworks ability in solving the
received query both at schema (SRI-based information) and at multimedia (MRI-
based information) levels and can thus be properly tailored in order to implement
clever routing strategies. This is the subject of the following section.

4 Routing Strategies

Starting from the queried peer, the objective of any query processing mechanism is
to answer requests by navigating the network until a stopping condition is reached.
A query is posed on the schema of the queried peer and is represented as a tuple
q = (id, f,7,nres) where: id is a unique identifier for the query; f is the query
formula; nres is the stopping condition specifying the desired number of results
as argument of the LIMIT clause; and 7 is an optional relevance threshold. Then,
query answers can come from any peer in the PDMS that is connected through a
semantic path of mappings.

In this context, the adoption of adequate query routing strategies is a funda-
mental issue. Indeed, Sec. 2 shows that any peer satisfying the query conditions
may add new answers and different paths to the same peer may yield different an-
swers. More precisely, at each reformulation step, a new peer pyest € P is selected,
among the unvisited ones, for query forwarding. The adopted routing strategy is
responsible for choosing pyest, thus determining the set of visited peers P’ and in-
ducing an order 9 in P’: [py (1), - - -, Py(m))- Further, the visiting order determines
the path P, , which is exploited to reach each peer p; € P’ and, consequently,
the set of returned local answers and the semantic approximation accumulated in
reaching pj, i.e. Ans(f, Py p,)-

Then, in order to increase the chance that users receive first the answers which
better satisfy the query conditions, several routing policies can be adopted. More
precisely, as we explained in Sec. 3.3, when a peer p receives a query q it exploits



its indices information to compute a ranking R” . (f) on its neighbors expressing

the goodness of their subnetworks w.r.t. the query formula f.

Afterwards, different query forwarding criteria relying on such ranked list are
possible, designed around different performance priorities. In [8] two main fami-
lies of navigation policies are introduced: The Depth First (DF) query execution
model, which pursues efficiency as its main objective, and the Global (G) model,
which is designed for effectiveness. Both approaches are devised in a distributed
manner through a protocol of message exchange, thus trying to minimize the
information spanning over the network.

In particular, the DF model is efficiency-oriented since its main goal is to limit
the query path. More precisely, with the aim of speeding up the retrieval of some
(but probably not the best) results, the DF model only performs a local choice
among the neighbors of the current peer, i.e. it exploits the only information
provided by RY . (f).

Differently from the DF one, in the G model each peer chooses the best peer
to forward the query to in a “global” way: It does not limit its choice among
the neighbors but it considers all the peers already “discovered” (i.e. for which a
navigation path leading to them has been found) during network exploration and
that have not been visited yet. More precisely, given the set V of visited peers,
it exploits the information provided by U,cy R, (f) in order to select, at each
forwarding step, the best unvisited peer. Obviously, going back to potential distant
peers has a cost in terms of efficiency, but always ensures the highest possible
effectiveness, since the most promising discovered peers are always selected.

According to our query answering semantics, P’ is thus defined as the ordered
set of visited peers [py 1), ..., Py(m)] such that [{Ans(f, p) U Ans(f, py))U... U
Ans(f,pypn))} > nres and [{Ans(f,p) U Ans(f, py))U. .. UAns(f, pypm-1))} <
nres, where the ordering function v is given by the adopted routing strategy.

As to the optional threshold 7, when 7 > 0, those subnetworks whose relevance
(in terms of combined routing score) is smaller than 7 are not considered for query
forwarding. The underlying reason is that a forwarding strategy which proceeds
by going deeper and deeper toward poorly relevant network areas (i.e. not very
semantically related to the query and containing few multimedia matching ob-
jects) can exhibit bad performances and, thus, it is better to start backtracking
towards other directions. The adoption of a threshold 7 may thus positively in-
fluence the composition of P’, since “poorer” subnetworks are not considered for
query forwarding. On the other hand, a not-null threshold introduces a source of
incompleteness in the querying process, as the pruned subnetworks might contain
matching objects. Completeness can instead be guaranteed when 7 = 0, since
subnetworks with a 0 routing score can be safely pruned.

5 Experiments

In this section we present an initial set of experiments we performed in order to
evaluate our combined query routing approach. Notice that, since we are currently
in the initial phase of our testing, the considered scenarios are not particularly
complex; in the future we will enrich them with more complicated and larger ones.



For our experiments, we exploited our simulation environments for putting into
action the SRI [6,7] and MRI [3,4] approaches. Through these environments we
modelled scenarios corresponding to networks of semantic peers, each with its own
schema, consisting of a small number of concepts, and a repository of multimedia
objects. As to the multimedia contents, we use few hundreds of images taken from
the Web and characterized by two MPEG-7 standard features: scalable color and
edge histogram. We tested our techniques on different alternative network topolo-
gies, randomly generated with the BRITE tool (http://www.cs.bu.edu/brite/),
whose mean size was in the order of few dozens of nodes. In order to evaluate the
performance of our techniques we simulated the querying process by instantiat-
ing different queries on randomly selected peers and propagating them until their
stopping condition on the number of retrieved results is reached: We evaluated
the effectiveness improvement by measuring the semantic quality of the results
(satisfaction) and, on the other hand, the efficiency improvement by measuring
the number of hops performed by the queries. Satisfaction is a specifically intro-
duced quantity which grows proportionally to the goodness of the results returned
by each queried peer: Each contribution is computed by combining the semantic
mapping scores of the traversed peers (see [6]). The search strategy employed is
the depth first search (DF). In our experiments we compare our neighbor selec-
tion mechanism based on a combination of SRIs and MRIs (Comb) with the two
mechanisms which only exploit the SRI (SRI) and MRI (MRI) values and with a
baseline corresponding to a random strategy (Rand). The employed aggregation
function is the mean. Notice that all the results we present are computed as a
mean on several query executions.

Figure 2-a represents the trend of the obtained satisfaction when we gradually
vary the stopping condition on the number of retrieved results. As we expected,
the Rand and the MRI strategies show a similar poorly effective behavior since
both select the subnetworks to explore without considering their semantic rele-
vance. As we expected, they are thus outperformed by the SRI strategy which,
on the contrary, is able to discriminate at each step the semantically best direc-
tion and, thus, increases the satisfaction in a substantial way. Nevertheless, the
Comb routing reveals itself as the most effective one: it works by considering in
an integrated way semantic and multimedia information and, consequently, tends
to cover shorter paths which inherently have a lower approximation (and, thus, a
higher satisfaction).

As to the efficiency evaluation, Figure 2-b represents the trend of the hops
required for satisfying queries. Also this time, the Rand routing exhibits the worst
behavior while the SRI one, which has no kind of knowledge on multimedia data,
often comes closer to it. Though being poorly effective, the MRI strategy is instead
the most efficient one, since, for each query, it selects the subnetworks with the
higher number of (even not semantically good) multimedia matching objects. On
the other hand, the lower efficiency of the Comb routing is motivated by the fact
that it wastes more hops in searching semantically relevant objects.

Summing up, the Comb strategy represents the best alternative and proves to

be able to increase the chance to retrieve first the answers which better satisfy the
query conditions
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Fig. 2. Effectiveness and efficiency evaluation
Concluding Remarks

We presented an innovative approach for processing queries effectively and effi-
ciently in a distributed and heterogeneous environment, like the one outlined in
the NeP4B project. As far as we know, this is the first research proposal specifi-
cally devised to enhance the processing of queries in a network of semantic peers
which share both semantic and multimedia data.
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