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Abstract. In this paper we present our main current research activity in the Italian 
co-funded FIRB Project NeP4B (Networked Peers for Business). In particular, we 
provide an overview of our P2P query routing approach which combines seman-
tics and multimedia aspects in order to make query processing effective and effi-
cient. 

Motivation 

Information and communication technologies (ICTs) over the Web have become a 
strategic asset in the global economic context. The Web fosters the vision of an In-
ternet-based global marketplace where automatic cooperation and competition are 
allowed and enhanced. This is the stimulating scenario of the ongoing Italian 
Council co-funded NeP4B (Networked Peers for Business) Project whose aim is 
to develop an advanced technological infrastructure for small and medium enter-
prises (SMEs) to allow them to search for partners, exchange data and negotiate 
without limitations and constraints. 

According to the recent proposal of Peer Data Management Systems (PDMSs) 
[1, 2], the project infrastructure is based on independent and interoperable seman-
tic peers who behave as nodes of a virtual peer-to-peer (P2P) network for data and 
service sharing. In this context, a semantic peer can be a single SME, as well as a 
mediator representing groups of companies, and consists of a set of data sources 
(e.g. data repositories, catalogues) placed at the P2P network disposal through an 
OWL ontology. These data sources include multimedia objects, such as the de-
scriptions/presentations of the products/services extracted from the companies’ 
Web sites. This information is represented by means of appropriate multimedia at-
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tributes in the peers’ ontologies (e.g. image in Peer1’s ontology of Figure 1) that 
are exploited in the searching process by using a SPARQL-like language properly 
extended to support similarity predicates. As an example, let us consider the query 
in Figure 1 which asks Peer1 for the Italian products similar to the represented 
one. As can be seen, the clause WHERE is extended with the operator LIKE indi-
cating the referenced image.  

Each peer is connected to its neighbors through semantic mappings, appropri-
ately extended with scores expressing their strength, which are exploited for query 
processing purposes: In order to query a peer, its own ontology is used for query 
formulation and semantic mappings are used to reformulate the query over its im-
mediate neighbors, then over their immediate neighbors, and so on. For instance, 
in Figure 1 the concepts product, origin and image of the sample query 
must be reformulated in item, provenance and photo when the query is for-
warded to Peer2. As to the computation of the semantic mappings and the associ-
ated scores, in the project an effective approach which exploits the semantics and 
the structure of the available schemas and which descends from the one proposed 
in [3] is employed. 

In such a distributed scenario, where query answers can come from any peer in 
the network which is connected through a semantic path of mappings [2], a key 
challenge is query routing, i.e. the capability of selecting a small subset of relevant 
peers to forward a query to. Flooding-based techniques are indeed not adequate 
for both efficiency and effectiveness reasons: Not only they overload the network 
(forwarded messages and computational effort required to solve queries), but also 
overwhelm the querying peer with a large number of results, mostly irrelevant.  

As part of the NeP4B project, we leverage our distinct experiences on semantic 
[4,5] and multimedia [6] query routing and propose to combine the approaches we 
presented in past works in order to design an innovative mechanism which ex-
ploits the two main aspects characterizing the querying process in such a context: 
The semantics of the concepts in the peers’ ontologies and the multimedia con-
tents in the peers’ repositories. More precisely, since the reformulation process 
may lead to some semantic approximation, we pursue effectiveness by selecting, 
for each query, the peers which are semantically best suited for answering it. Fur-
ther, since the execution of multimedia similarity queries is inherently costly (they 
typically require the application of complex distance functions) we also pursue ef-
ficiency by limiting their forwarding to the network’s zones where potentially 
matching objects could be found, while pruning the others.  

 
 
On Query Routing 

In the context of the NeP4B Project a query posed at a peer usually contains pre-
dicates involving the concepts of the peer’s ontology and multimedia similarity 
constraints. Thus, both the semantics and the multimedia features of the retrieved 
data are fundamental: An image that, according to some given multimedia fea-
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tures, is very similar to the required one is not a relevant result if the two repre-
sented concepts are completely semantically unrelated (e.g. a church and a hotel 
with similar shapes). Thus, in order to provide an effective and efficient query 
processing both the aspects need to be considered. 
 

 
Fig. 1. Reference scenario 

In [4] an effective semantic query routing approach for PDMSs is presented. In the 
work, each peer maintains cumulative information summarizing the semantic ap-
proximation capabilities, w.r.t. its ontological schema, of the whole subnetworks 
rooted at each of its neighbors. Such information is kept in a local data structure 
called Semantic Routing Index (SRI). In particular, a peer p having n neighbors 
and m concepts in its ontology stores an SRI structured as a matrix with m col-
umns and n+1 rows, where the first row refers to the knowledge on the local 
schema of peer p. Each entry SRI[i][j] of this matrix contains a score in [0,1] ex-
pressing how the j-th concept is semantically approximated by the subnetwork 
rooted at the i-th neighbor, i.e. by each semantic path of mappings originated at 
the i-th neighbor. A sample fragment of Peer1’SRI is represented in Figure 2, 
where, for instance, the score 0.34 in the Peer4 row and the Product column is 
the outcome of the aggregation of the scores associated to the paths Peer4, Peer4-
Peer5, Peer4-Peer6 and Peer4-Peer6-Peer7. Notice that, since SRIs summarize the 
semantic information offered by the network, they need to change whenever the 
network itself changes. SRIs construction and evolution is thus managed in an in-
cremental fashion by exploiting the specifically devised process presented in [4].  

When a peer needs to forward a query, it accesses its own SRI for determining 
the neighboring peers which are most semantically related to the query’s concepts. 
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For instance, considering the concept Product of the query in Figure 1, the most 
promising subnetwork would be the one rooted at Peer 2 (score 0.73 in Figure 2). 
More precisely, if the query involves more concepts, the choice of the best neigh-
bors is given by applying scoring rules which, for each neighboring peer, combine 
the corresponding SRI grades of all the query’s concepts [5]. As a result, each 
neighbor is associated a score in [0,1] reflecting the semantic relevance of its sub-
network w.r.t. the query. These scores allow the forwarding peer to compute a 
ranking that can be exploited in order to implement different semantic routing pol-
icies [5]. 

 
Fig. 2. Peer1's SRI 

 
As to the multimedia contents, MRoute [6] is a P2P routing index mechanism 

for efficient similarity search in metric spaces. To this end, each peer builds, for 
each of its objects O and for each considered multimedia feature Fi, different fea-
ture indices, in order to allow both multi- and single-feature queries. Each index 
exploits a reference object Rj

Fi, i.e. an object that is used to determine the position 
of other objects in a metric space. More precisely, it is a k binary vector (b0,...,bk-1) 
which originates from a uniform partition of the distance between the object and 
the reference point d(O.Fi , Rj

Fi) into k intervals [a0,a1),…, [ak-1,ak]. The vector con-
tains one bit bs=1 in correspondence with the interval [as,as+1) in which d(O. Fi, 
Rj

Fi) falls, 0s in all the other entries (e.g. see Figure 3).  

 
Fig. 3. Feature index of object O for the feature Fi 

Then, considering the reference object Rj
Fi, each peer maintains a global index 

as the sum of the local indices associated with it (shown with dark background in 
the example of Figure 4). Such an index shows how the peer’s objects are distrib-
uted in the given intervals. Thus, it can be regarded as a histogram of a peer’s ob-
jects feature distribution. Moreover, each peer also maintains Multimedia Routing 
Indices (MRIs) for each of its neighbors. Each MRI represents the aggregated de-
scription of the resources available in the subnetwork rooted at each neighbor and 
is built by summing up the global indices of the peers in the subnetwork (shown in 
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light background in Figure 4 for Peer1). More details on the process of construc-
tion and evolution of the MRIs can be found in [6]. 

When a query is issued to the network, the query object (i.e. the LIKE argu-
ment) is mapped into the same metric space, thus giving rise to as many bit vec-
tors as the number of reference objects. Each peer that receives the query forwards 
it to the neighbors whose indices intersect the query ones. Further, since MRIs can 
be viewed as histograms, they allow peers to estimate the number of potentially 
matching objects in the neighbor’s subnetwork. In particular, each neighbor is as-
signed a score in [0,1] reflecting that estimation and a ranking on the most promis-
ing directions can be computed. For example, going back to Figure 4 and suppos-
ing the bit vector of the query w.r.t. reference object Rj

Fi is (0,0,1,0,0), the most 
promising neighbor for Peer1 would be Peer4. 

 
 

Fig. 4. Creation of Peer1’s MRIs 
 
Leveraging our experience on SRIs and MRoute, our final objective in the 

NeP4B Project is the development of an advanced routing mechanism that allows 
each peer to rank its own neighbors w.r.t. their ability to answer a given query 
both effectively (i.e. minimizing the information loss due to its reformulation 
along semantic mappings) and efficiently (i.e. minimizing the network load due to 
the exploration of useless subnetworks). At each query reformulation step, such a  
routing mechanism works by exploiting and properly combining the neighbor 
rankings computed by the two approaches. Indeed, when a peer p receives a query, 
both the SRI and MRoute approaches associate each p’s neighbor a score in [0,1] 
quantifying the semantic relevance and the amount of potential matching objects 
in its subnetwork, respectively. These scores are homogeneous (i.e. graded in 
[0,1]) and can be combined by means of a meaningful aggregation function in or-
der to obtain a unique ranking. In [7] it is stated that optimal aggregation algo-
rithms can work only with monotone aggregation function. Typical examples of 
these functions are the min and mean functions (or the sum, in the case we are not 
interested in having a combined grade in the interval [0,1]).  
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As an example of how the aggregation process works, let us go back to the 
sample query in Figure 1 and suppose Peer1 obtains the scores in Figure 5. The 
rankings computed by SRI and MRoute are thus Peer2-Peer3-Peer4 and Peer4-
Peer3-Peer2, respectively. An example of straightforward aggregation function is 
the standard fuzzy conjunction min(score1,score2). Thus, by using it, we compute 
the following final ranking: Peer3-Peer4-Peer2. As a result, the most promising 
subnetwork will be the one rooted at neighbor Peer3.  

Notice that, in the computation, irrelevant subnetworks (i.e. subnetworks with a 
score of 0) can be safely pruned. The obtained ranking reflects the foreseen sub-
networks ability in solving the received query both at schema (SRI-based informa-
tion) and at multimedia (MRoute-based information) level and can thus be ex-
ploited in order to implement clever routing strategies like the ones proposed in 
[5].  

 
Fig. 5. Peer1's scores for the sample query  
 

Experiments 

In this section we present an initial set of experiments we performed in order to  
evaluate our combined query routing approach. Notice that, since we are currently 
in the initial phase of our testing, the considered scenarios are not particularly 
complex; in the future we will enrich them with more complicated and larger ones. 
For our experiments, we exploited our simulation environments for putting into 
action the SRI [5] and MRoute [6] approaches. Through these environments we 
modelled scenarios corresponding to networks of semantic peers, each with its 
own schema, consisting of a small number of concepts, and a repository of multi-
media objects. We chose peers belonging to different semantic categories, where 
the peers in the same category have schemas describing the same topic from dif-
ferent points of view and own multimedia data related to that topic. The schemas 
are distributed in a clustered way: This reflects realistic scenarios where nodes 
with semantically similar contents are often connected through semantic map-
pings. As to the multimedia contents, we use 1300 images taken from the Corel 
Photo CDs and characterized by two MPEG-7 standard features: scalable color 
and edge histogram. We tested our techniques on different alternatives network 
topologies, randomly generated with the BRITE tool5, whose mean size was in the 
order of few dozens of nodes. In order to evaluate the performance of our tech-
niques we simulated the querying process by instantiating different queries on 
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randomly selected peers and propagating them until a stopping condition is 
reached: We evaluated the effectiveness improvement by measuring the quality of 
the results (combined satisfaction) when a given number of hops has been per-
formed or, in a dual way, the efficiency improvement by measuring the number of 
hops required to reach a given combined satisfaction goal. Combined satisfaction 
is a specifically introduced quantity which grows proportionally to the goodness 
of the results returned by each queried peer: Each contribution is computed by 
combining the semantic mapping scores of the traversed peers (satisfaction meas-
ure [3]) and the multimedia similarity scores of the retrieved objects. The search 
strategy employed is the depth first search (DFS). In our experiments we compare 
our neighbor selection mechanism based on a combination of SRIs and MRoute 
(Comb) with the two mechanisms which only exploit the SRI (SRI) and MRI 
(MRI) values and with a baseline corresponding to a random strategy (Rand). The 
employed aggregation function is the mean. Notice that all the results we present 
are computed as a mean on some query executions. 
 

 
 

Fig. 6. Obtained combined satisfaction for a given number of hops (left) and mean number of 
hops for a combined satisfaction goal (right). 
 

Figure 6 shows the trend of the obtained combined satisfaction when we gradu-
ally vary the stopping condition on hops (left) and the dual situation (right) where 
the number of hops required to reach a given satisfaction goal is measured. As we 
expected, both the SRI and the MRI strategies outperform the Rand one, but, as we 
can see, the winner is the Comb mechanism. In particular, the difference between 
SRI - MRI and Comb performance appears closer in the initial part of the graphs 
but becomes increasingly more significant at growing stop conditions. This means 
that Comb is indeed able to discriminate better subnetworks to explore and conse-
quently increases the combined satisfaction and decreases the number of hops in a 
more substantial way. As an example of this behavior, when we executed a query 
involving the concept Monument and a similarity constraint on an image of the 
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Pisa tower, we observed that the Rand strategy worked by randomly selecting 
peers which were completed unrelated with the image and the concept required. 
On the other hand, the SRI strategy proceeded by firstly selecting some peers 
which have the concept Monument (and thus a very high SRI’s score) but no im-
age similar to the Pisa tower. Further, the MRI approach preferred some peers 
which store the images of some chimneys (whose multimedia features were very 
similar to the Pisa tower’s ones) even if they were associated to the concept Fac-
tory. Only the Comb strategy was able to identify the best peers, i.e. the peers 
where the images of the Pisa tower are associated to concepts similar to the re-
quired one. 
 

Conclusions 

In this paper we presented our idea of query routing for the NeP4B Project which 
combines two strategies in order to answer queries both effectively and efficiently.  
The initial set of experiments we performed shows promising results. In the future 
we will deepen the testing of our techniques by using larger and more complex 
scenarios.  
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