
InstaCircos: a Web Application for
Fast and Interactive Circular Visualization

of Large Genomic Data (Work in Progress)
Gaia Ghidoni, Riccardo Martoglia

FIM - University of Modena and Reggio Emilia, Italy
gaia.ghid@gmail.com, riccardo.martoglia@unimore.it

Cristian Taccioli, Chiara Vischioni
MAPS - University of Padova, Italy

cristian.taccioli@unipd.it, chiara.vischioni@phd.unipd.it

Abstract—One of the most effective visualizations for genomics
data is the circular one, supported by popular packages and
visualization suites. Many tools are available, however most of
them share a number of negative points including limited ease
of installation/usage, slow performance and memory limitations
(making them unfeasible for very large genomes such as the
human one) and non interactivity. In this paper we present the
ongoing work on InstaCircos, a web application born from the
scientific collaboration between Big Data Analytics and Bioinfor-
matics researchers and aiming at overcoming the available tools’
limitations. It provides advanced visualization features through
an easy to use web interface and offers interactive functionalities
and near real-time performances thanks to an integrated big data
management back-end based on MongoDB.

Index Terms—Genomic data visualization, interactive visual-
ization, circular layout, big data management, web application.

I. INTRODUCTION

When dealing with scientific data, it is essential for re-
searchers to have tools allowing them to efficiently view
huge quantities of data with effective visualizations. This is
particularly true for bioinformatics research, where the size of
the genomics data coupled with the fact that the analyses often
depend on several still unexplored and unclear factors (think
for instance about cancer research), makes the use of novel
data analysis and, in particular, advanced and innovative data
visualization techniques an essential matter.

When working with genomics data, one of the most effec-
tive visualizations is the circular one, supported by popular
packages and visualization suites. Circos [1], [2], written in
Perl, is the predominant package used for genome feature
visualization. Other available options are RCircos [3], [4],
omicCircos [5], [6], Circoletto [7], [8] and PyCircos [9].

The many options offered in the panorama of currently
available tools shows that (circular) genomic visualization is
an hot topic in current research. However, available tools share
a number of negative points from multiple points of views:

• Limited ease of use: the installation and configuration of
these tools requires technical knowledge on command-
line and Perl (or Python) scripts, which poses a certain
degree of difficulty for users lacking coding experience;

• Slow performance and memory limitations: while most
tools can produce a visualization of small genomes in

few minutes, the representation of medium-size genomes
is typically a very long operation (hours). Moreover, the
visualization of very large genomes such as the human
one is often not possible: this is due not only to slow
performances but also to the fact that these tools typically
require all data to be kept in main memory;

• Non interactivity: available tools provide, after a certain
amount of processing time, a static image of the data,
which are perfectly suitable for a publication, but are not
able to support user interaction which is recognized as a
key aspect in biological data exploration [10].

In this paper we present an ongoing work we are conducting
on a novel tool for interactive circular visualization of genomic
data, named InstaCircos. InstaCircos aims at overcoming the
available tools’ limitations, providing through an easy to
use web interface advanced visualization features offering
interactive functionalities and near real-time performances.

The contributions of InstaCircos, which will be made pub-
licly available as a web application once finished, are the
following:

• Circular visualization: InstaCircos shows genomic data
(including chromosome, coding DNA sequence (CDS)
density and link information) in a familiar circular layout,
which is particularly advantageous for the immediate
feedback and for the visual impact of the result;

• No size restrictions: by means of an integrated big
data management back-end based on MongoDB the tool
enables the visualization of very large genomes (including
human ones) without imposing any memory requirement
on the user;

• Near-instant visualizations: the visualizations are gen-
erated in real-time from the cached data, enabling data
exploration through different forms of user interaction on
the generated graphs;

• User-friendliness: the tool does not require any coding
skill or installation.

As far as we know, there are no tools or web applications
of this kind offering all the above features.

The paper is organized as follows: in Section II we discuss
related works, Section III gives a high-level overview of the
application and its architecture, Section IV is devoted to the



description of the data management strategies and integrated
database, Section V discusses the client UI and user interac-
tion. Finally, Section VI analyzes the development stages and
the obtained performances, while Section VII concludes the
paper, discussing future works.

II. RELATED WORKS

Many tools have been recently proposed in the field of
genomic data visualization. Circos [1] is one of the most used
and well-known among researchers and one of the first in
proposing a circular layout, ideal for exploring relationships
between objects or positions. Circos has appeared in many
publications [11], both scientific and general ones, and it has
changed the way the scientific community visualizes genomic
alterations. Circos is written in Perl and its installation and
configuration require knowledge on command-line and Perl
script, making it non ideal for non coding experts.

Alternatives to Circos have been developed to (partially)
address the issue, providing easy installation but, on the
other hand, still requiring setup and coding-skills from the
users. Among these application, we recall R packages such us
RCircos [3] and omicCircos [5], which, nevertheless, require
users to be familiar with R programming language. Further
options, always requiring coding skills, are Circoletto [7], a
visualization suite written in Perl, and pyCircos, written in
Python. Circoletto has been developed in the specific context
of bringing together in an efficient implementation BLAST
(Basic Local Alignment Search Tool) and Circos functionali-
ties. pyCircos [9] is a Python-based package able to represent
genome features from the input of a Genbank [12] format file.

All the above mentioned options do not offer effective
data management solutions allowing smart data allocation;
instead, they require the full data to be kept in main memory,
making the storage for the display of very large genomes often
unfeasible (if not even impossible). For instance, pyCircos
works efficiently with small genomes, such as the one of
Archea microorganisms, but when managing bigger files,
including the human genome, it generates memory errors
making it impossible to generate plots. Moreover, interactivity
is typically not supported.

The only web application option we are aware of is ClicO
FS [13], [14], a user-friendly web service, developed using R
and Shiny. The goal of ClicO is mainly to automate standard
Circos installation and usage, making it run directly from
a web browser. However, the shortcomings of the standard
Circos remain, including the production of a static image
(the “interaction” is basically for choosing the parameters to
generate the image) and the limitation to small genomes.

InstaCircos, on the other hand, enables the efficient visual-
ization even of very large genomes, also offering interactivity
features to the generated plots.

III. HIGH-LEVEL OVERVIEW

InstaCircos is presented as a Web Application, making
all the visualization/analysis functions instantly available and
easily accessible to researchers. The application includes a

Server side Client side

Plotly - Dash Bio

Flask React.js

Fig. 1. InstaCircos architecture and technologies: server side and client side

server side part for data management and a client side for
managing the visualization / interaction / UI (see Figure
1). InstaCircos is being developed in Python using Dash1

– a Python framework written on top of Flask, Plotly and
React.js – for the UI components. Server side data manage-
ment exploits Biopython2, the open-source collection of tools
for computational biology, and MongoDB3, the document-
oriented database.

InstaCircos allows users to select among a number of scien-
tifically notable genomes, including very large ones such the
human one. Such genomes are stored in the platform integrated
database and ready to be visualized. Genome data (data from
GenBank collection and additional elaborated data includ-
ing link information from sequence alignment processing) is
stored in the database to speed up the data retrieval at plot time,
making it possible to create circular plots of large genomes
without a huge parsing overhead. The use of a database also
reduces the memory usage by retrieving only the data of
interest for generating the plots. Genome file parsing, pre-
processing, storing and indexing is optimized to be efficiently
performed, therefore we plan to also support user-provided file
storing and visualization in the final version of our tool. The
format and details of the data and its processing, the schema
of the database and how it is indexed and queried will be
discussed in details in Section IV.

Once the genome of interest is selected, different kinds of
features can be retrieved from the database through targeted
queries and displayed in concentric tracks inside the chro-
mosomes circular representation. After a minimal processing
of the query result the data is ready to be passed to the the
visualization component (based on Dash Bio) for the graphic
rendering. The output can include up to 6 kinds of plot
types, including heatmap, highlight, scatter, line, histogram
and chords. Figure 2 shows an example plot representing
the human genome, with the 24 labelled chromosomes in
the outermost circle and additional data shown in the inner
tracks (see caption for details). All generated plots support
interactivity by means of mouse hover or mouse click events.

1http://plotly.com/dash/
2http://biopython.org/
3http://www.mongodb.com/



Fig. 2. Details on the human genome plot. The chromosomes, labeled with
names, are arranged in the outer circle (A), on which the length scale is
displayed. The first highlight track (B) represents all CDS regions located in
the forward DNA strand, and it’s followed by two heatmap tracks that show
the CDS density respectively on the forward (C) and on the reverse strand
(D). The fourth track reports the gene density on both strands (E). Finally,
the innermost tracks shows some sample links between chromosomes (F).

More details on the visualization and interaction features are
discussed in Section V.

IV. DATA MANAGEMENT AND DATABASE

In this section we describe the details on the source and
format of the data on which InstaCircos is based: from the
raw genomic data, to its pre-processing, to the final database
and its indexing and querying.

Genome files from the GenBank collection and their as-
sembly report files are parsed with Biopython and stored
in MongoDB. Additional data resulting by usage of LASTZ
sequence alignment program4 is also stored in the database
and retrieved to create chords plots.

A. Raw data format and sources

The starting raw data come from the GenBank database: the
NIH genomic sequence database, designed to provide access
to the most up-to-date and comprehensive DNA information.
In particular, the files of interest are GBFF (GenBank Flat
File) files and assembly report files. The GBFF format is a
way of representing nucleotide sequences including metadata
annotation. It is presented as a list of loci: each locus rep-
resents a genome section, which may be a chromosome or
other assembly levels such as scaffolds and contig (unplaced
or unlocalized sequence) and it is completed with the genomic
sequence and a list of genomic features. The assembly report
file is a tab-delimited text file reporting name, role, sequence

4http://github.com/lastz/lastz/

Chromosome

id
length
name
role
description
...

Feature

chr_id
id
strand
type
location
...

Seq

chr_id
sequence

Links

start id
...
end id
...

Fig. 3. Schema of the InstaCircos database in MongoDB

length and sequence accession version of each object in the
assembly.

B. GBFF Data pre-processing

Once a genome to be stored in the database is selected, the
assembly report file is read to retrieve the sequence role of
all the sequences in the GBFF file. The sequences of interest
are, in fact, the ones with the highest assembly level: the
chromosomes. This information will be crucial for the retrieval
at plot time and it will be stored in the database alongside the
GBFF file’s data. The GBFF file is read and parsed with the
Biopython library, which provides an input-output interface for
genomic files.The retrieved attributes are:

• Id: sequence identifier;
• Annotations: Python dictionary containing various infor-

mation, link source and reference;
• Description: a string containing the sequence description;
• Features: includes the following attributes:

– Location: feature location inside the genomic se-
quence;

– Type: feature type (CDS, rRNA, exons, etc.);
– Strand: DNA strand on which the feature is located.

Value 1 indicates the forward strand, while value -1
indicates the reverse strand;

– Id: feature identifier;
– Qualifiers: Python dictionary with additional infor-

mation;
• Seq: a string with the genomic sequence (a complete list

of the nucleotides that make up the sequence) and its
associated alphabet.

After a minimal rearrangement of the above information so
to meet the document-like format required by MongoDB, the
genome date is ready to be loaded in the database.

C. Sequence alignment analysis

In order to support link data visualization, besides the GBFF
file preprocessing, the chromosome sequences are read and
stored in FASTA format file (text-based format for represent-
ing genomic sequences, possibly preceded by the sequence
name and comments) to be used as input data for the sequence
alignment analysis phase, for which LASTZ is exploited. The
links that will be extracted identify the reverse complements
within the chromosomes, which InstaCircos will be able to
graphically visualize. Since the output of the LASTZ com-
mand grows almost quadratically, we adopt specific filtering
criteria in order to filter the results by excluding links of
lesser importance and extracting only the most relevant ones



Fig. 4. InstaCircos web interface showing a sample plot of human genome: at the sides, a summary and a multi-tab panel add information and interactivity

(e.g., search in sequences longer than 100 bases, percentage of
matching bases of at least 99%). This makes links extraction
feasibile for all chromosomes (including the largest ones): for
instance, for human chromosome 1 the output is reduced to
29MB (instead of over 900GB).

An example of LASTZ output file is a tab-delimited text
file as the following:

name1 start1 end1 name2 start2+ end2+
chr22 31112257 31112301 chr22 50805867 50805911
chr22 18531481 18531516 chr22 50805868 50805903
chr22 25482021 25482052 chr22 50805668 50805699

Each row represents a link between two genomic regions
(chromosome 22 in the example), both described with the
starting and ending position in the target sequence.

D. InstaCircos Database

All the described data are then stored in a document-
oriented database. The adoption of MongoDB is motivated
by the scale-out architecture and the powerful and flexible
data model that perfectly adapts to the genomic data structure,
which, sometimes, may be incomplete.

The database is composed of four collections (Figure 3):
• Chromosome: this collection holds general information

about each sequence;
• Feature: each document in the collection represents a

feature. For each feature the following information are
stored: the sequence identifier in which the feature is
located; the actual location of the feature inside the
sequence, written as a starting and ending coordinate; if
present, a qualifiers sub-document, with additional data.
If the feature is a set of non-contiguous sequences, an
additional field stores the list of start-end coordinates;

• Links: this collection holds the alignment links, each
stored as a document containing two sub-documents, for
the beginning and the end of the link;

• Seq: this collection stores the genomic sequence itself,
i.e., the complete list of the nucleotides, as a string.

Since genomic sequences can be long enough to exceed the
database’s document size limit, which is 16 megabytes, the
GridFS API provided by MongoDB is exploited.

An instance of MongoDB database is kept for each stored
genome, providing the possibility to select different kinds of
sample species for generating the plots.

E. Dynamic data retrieval

With genome data pre-processed and stored in the database,
data retrieval is performed at plot time, making it possible
to create circular plots of large genomes by extracting only
the needed information. More specifically, data is retrieved
through the following queries w.r.t. the collections discussed
in the previous section:

• the “chromosome” collection is queried to retrieve basic
information about all the genomic sequences with a
specific role and to retrieve data of single sequences,
selected by its identifier;

• the “feature” collection’s documents are retrieved based
on the chromosome identifiers which they belong to and
their feature type. If necessary, the DNA strand is also
specified;

• queries on the “links” collection are used to retrieve all
links starting in a specified sequence, or the links which
occur between two sequences;

• finally, the “seq” collection holding the genomic se-
quences is queried through sequence identifiers.

An important note on link management: representing all the
links retrieved with LASTZ and stored in the database would
be of little use, as it would make the graph unreadable. Since
the main interest regarding reverse complement sequences
is to have information on the links that fall within genes,
InstaCircos exploits an automatic link filtering phase, keeping



Fig. 5. UI details: (a) density and (b) sequence information shown on mouse over; (c) species selection dropdown; (d) genome/tracks summary table.

only those that start and end within genes as candidates for
representation. Finally, indexes on all collections support the
efficient execution of all queries.

V. CLIENT UI AND INTERACTION

InstaCircos graphical interface is developed using Dash and
Dash-bio framework. Dash is ideal for building data visualiza-
tion apps with highly custom user interfaces. Moreover, since
Dash apps are viewed in the web browser, InstaCircos interface
is inherently cross-platform and mobile ready.

Figure 4 shows the web page UI of the current prototype of
InstaCircos. See also Figure 5 for some details on the interface
features and interactions. The focus of the user interface is on
the graph visualization. The plot is shown in a central position,
while at its sides a summary panel and a multi-tab panel are
placed to add information and interactivity.

A dropdown, placed under the application logo, allows
the user to choose a species from those available in the
application’s database. Once a species is selected, its genome
is efficiently represented in the form of a circular plot (see
Section VI for implementation and performance details).

The plot can be zoomed and moved inside its canvas, and
details of the data represented in the graph are shown as soon
as the mouse hover on a plot component, such us density
value, feature name and position. A button on the top of the
plot makes it possible to download a vector image (SVG image
format) of the current shown graph.

The right-side panel is dynamically created on plot creation
and update, reporting some summary information of each
track, as well as the total length of the genome visualized.
The summary data can be either the number of retrieved
features (e.g., the number of genes in the forward strand),
or the maximum value for a track reporting a feature density.

On the right-side panel, the first tab shows, on mouse hover
on the plot, all the details available for the selected component,
as well as a slider to interactively change the plot size.

As to link visualization, InstaCircos offers some functions
that are not usually found on similar tools. It exploits link
filtering on the link data in order to dynamically “discover”
and show only the interesting links. In this way, the graph is
kept readable and the visualization can be also enriched with
the names of the discovered genes that make up the starting

68
42

2154

11

343

6

37

1

10

100

1000

Pyrococcus Abyssi (4.44MB) Homo Sapiens (4.26GB)

Se
co

n
d

s

pyCircos Prototype 1 Prototype 2 InstaCircos

Fig. 6. Performance comparison: execution time for small genome (left) and
large genome (right) visualization

and ending places, as obtained from the selected links (please
note that Figure 4 shows only a very limited number of sample
links in order to give an idea of their representation).

In the final version of the tool, we will provide additional
tabs containing all the selectable options and parameters to
dynamically create new plots, update the current one by
removing or adding new tracks, loading custom data, etc.

VI. DEVELOPMENT STAGES AND PERFORMANCE
EVALUATION

In this section we will briefly analyze the performances of
InstaCircos in terms of execution time required to generate
and display a graph, both in the case of a small (Pyrococcus
Abyssi, GBFF file size 4.44MB, excluding links) and a very
large (human genome, GBFF file size 4.26GB, excluding
links). In particular, we will compare the performances with
one of the most well known and used Python packages for
static circular plot generation, pyCircos. In order to under-
stand the impact of specific implementation choices, we will
consider the different evolution of InstaCircos by discussing
its key implementation stages and performances. Tests were
executed on a standard notebook with a x64-based CPU
@2.70GHz, 12GB RAM and a 1TB hard drive.

The first stage (that we will call “Prototype 1”) has been
developed as a static (non-interactive) application similar to
pyCircos, using Pandas and Matplotlib, the comprehensive
library for creating static visualizations in Python. The first
aim of the application was, in fact, to speed up the plot
creation of large genome file, such us the human genome.
In Prototype 1, and similarly to what is done in pyCircos and
in most state of the art, data was managed in main memory.
The plot was generated with Matplotlib functions, similarly



1

10

100

1000

Pyrococcus Abyssi (4.44MB) Homo Sapiens (4.26GB)

m
em

o
ry

 u
sa

ge
 (

M
B

)

pyCircos Prototype 1 Prototype 2 InstaCircos

Fig. 7. Server-side memory usage comparison: memory usage for small
genome (left) and large genome (right) visualization

to how the plot creation on pyCircos is handled, but, unlike
the latter, only the strictly necessary data was parsed and
stored in Pandas DataFrame, making it possible to visualize
big genomes. As shown in Figure 6, the performances of
pyCircos and Prototype 1 in creating the same kind of plot,
are the following: 68 seconds and 42 seconds, respectively.
Generating the same plot for the human genome is impossible
with pyCircos, due to a memory error. With Prototype 1 the
plot was successfully generated in 2154 seconds.

Since execution time for big genomes was still a down point,
we worked on Prototype 2 specifically on the data management
part. All the information was stored and retrieved in a database
structured as described in the paper, significantly reducing the
memory usage, as well as the performance time which dropped
down to 11 seconds for the Pyrococcus Abissy and to 343
seconds for the human genome.

Finally, Prototype 2 evolved in the InstaCircos version we
present in this paper. After a detailed profiling of the code, it
was clear most of the execution time was due to the plot saving
and the feature visualization. Further improvements were made
by optimizing the visualization functions, which in state of
the art tools such as pyCircos are typically called for each
and every feature selected. Once the execution time became
acceptable for an interactive interface, the tool was given
an interactive web interface, leading to InstaCircos current
implementation, As shown in Figure 6, these further changes
dropped the execution time of both the feature plotting and
the plot saving, for a total execution time of 6 seconds for the
small and 37 seconds for the human genome.

Speaking about server-side memory usage, the pyCircos
library on the Pyrococcus Abissy genome takes up to 172
MB. Our Prototype 1 reduces it to 39MB, and the memory
usage drops down to 25MB and 14MB for Prototype 2 and
current InstaCircos implementation, respectively, thanks to the
adoption of the database. For generating the human genome
plot the differences are even more noticeable: while pyCircos
goes out of memory, InstaCircos allows its management in
as little as 55 MB (compared with 6.43GB and 1.3GB of

VII. CONCLUSIONS AND FUTURE WORK

Genomic and, more generally, scientific research is in con-
stant need for tools allowing researchers to view and explore
large quantities of data with effective visual forms, so to foster

Prototype 1 and 2).
new discoveries. The InstaCircos project is born from the
scientific collaboration between Big Data Analytics and Bioin-
formatics researchers and enables the generation of circular
layout graphs (particularly advantageous for the immediate
feedback and for the visual impact of the result) that are: (a)
efficient in their generation and interactive, allowing users to
customize and explore the relationships between the elements
in different positions of the graph; (b) easy to use requiring
no installation or coding competencies; (c) applicable to very
large genomes without any memory requirement. No current
state of the art tool we are aware of satisfies all the above
requirements.

The project is still in development and will be made publicly
available as a web application once finished, as we did in
the past for other genomic exploration tools [15]. The current
prototype version already shows promising performances both
in terms of execution time and memory requirements. In
the future, we will: (i) select and add to the database a
representative number of additional notable genomes to be
explored; (ii) consider additional features, including richer
UI with additional options and parameters to dynamically
manage the plots and select user-defined portions of the data,
and support for custom user-provided genome storing and
visualization.

REFERENCES

[1] M. Krzywinski, J. Schein, I. Birol, J. Connors, R. Gascoyne, D. Hors-
man, S. Jones, and M. Marra, “Circos: an information aesthetic for
comparative genomics,” Genome research, vol. 19, pp. 1639–45, 07
2009.

[2] “Circos,” http://circos.ca/.
[3] H. Zhang, P. Meltzer, and S. Davis, “Rcircos: An r package for circos

2d track plots,” BMC bioinformatics, vol. 14, p. 244, 08 2013.
[4] “RCircos: Circos 2D Track Plot,” http://cran.r-

project.org/web/packages/RCircos.
[5] Y. Hu, C. Yan, C.-H. Hsu, Q.-R. Chen, K. Niu, G. A. Komatsoulis, and

D. Meerzaman, “Omiccircos: A simple-to-use r package for the circular
visualization of multidimensional omics data,” Cancer Inform, vol. 13,
pp. 13–20, 01 2016.

[6] “OmicCircos: High-quality circular visualization of omics data,”
http://bioconductor.org/packages/release/bioc/html/OmicCircos.html/.

[7] N. Darzentas, “Circoletto: visualizing sequence similarity with Circos,”
Bioinformatics, vol. 26, no. 20, pp. 2620–2621, 08 2010.

[8] “Circoletto,” http://omictools.com/circoletto-tool/.
[9] “Python Modules for Circos Plot,”

http://github.com/KimBioInfoStudio/PyCircos/.
[10] D. Otasek, C. Pastrello, A. Holzinger, and I. Jurisica, Visual Data

Mining: Effective Exploration of the Biological Universe. Springer
Berlin Heidelberg, 2014, pp. 19–33.

[11] I. Kuznetsova, A. Filipovska, O. Rackham, A. Lugmayr, and
A. Holzinger, “Circularized visualisation of genetic interactions,” in
Proc. of WWW Companion, 2017, p. 225–226.

[12] “NCBI GenBank,” http://www.ncbi.nlm.nih.gov/genbank/.
[13] W.-H. Cheong, Y.-C. Tan, S.-J. Yap, and K. P. Ng, “Clico fs: An inter-

active web-based service of circos,” Bioinformatics (Oxford, England),
vol. 31, 07 2015.

[14] “NCBI GenBank,” http://clicofs.codoncloud.com/.
[15] V. Lomonaco, R. Martoglia, F. Mandreoli, L. Anderlucci, W. Emmett,

S. Bicciato, and C. Taccioli, “Ucbase 2.0: Ultraconserved sequences
database (2014 update),” Database: the journal of biological databases
and curation, vol. 2014, 2014.


