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Abstract. Software development is still considered a bottleneck for SMEs (Small and
Medium Enterprises) in the advance of the Information Society. Usually, SMEs store
and collect a large number of software textual documentation; these documents might
be profitably used to facilitate them in using (and re-using) Software Engineering meth-
ods for systematically designing their applications, thus reducing software development
cost. Specific and semantics textual filtering/search mechanisms, supporting the identi-
fication of adequate processes and practices for the enterprise needs, are fundamental in
this context. To this aim, we present an automatic document retrieval method based on
semantic similarity and Word Sense Disambiguation (WSD) techniques. The proposal
leverages on the strengths of both classic information retrieval and knowledge-based
techniques, exploiting syntactical and semantic information provided by general and
specific domain knowledge sources. For any SME, it is as easily and generally applica-
ble as are the search techniques offered by common enterprise Content Management
Systems (CMSs). Our method was developed within the FACIT-SME European FP-
7 project, whose aim is to facilitate the diffusion of Software Engineering methods
and best practices among SMEs. As shown by a detailed experimental evaluation, the
achieved effectiveness goes well beyond typical retrieval solutions.
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1. Introduction and Motivations

One of the main bottlenecks for the development of the Information Society (Aetic
(Spain) et al, 2008) hes been software development, as the quality and produc-
tivity of work has not been able to keep up with the society software needs (DG
INFSO Internal Reflection Group on Software Technologies, ITEA, April 2002;
Standish Group, 2006). According to the analysis performed by the INNOSme
project (InnoSME Project, 2008) across several countries, these issues are espe-
cially critical for software SMEs (Small and Medium Enterprises): the available
resources cannot be devoted to new technology training as they are absorbed
in the activity of software production. Thus, the integration between Software
and Knowledge Engineering has become unavoidable in order to reduce time
and cost for software development and to increase software quality (Happel and
Seedorf, 2006; Binkley and Lawrie, 2010).

Usually, SMEs store and collect a large number of software textual docu-
mentation: indeed, text is everywhere and even test cases and inline comments
could be useful knowledge sources (Lethbridge, Singer and Forward, 2003). This
textual information might be profitably used to facilitate them in using (and
re-using) Software Engineering methods for developing their applications; how-
ever, their inadequate information systems often prevents them from doing so
(Garg, Goyal and Lather, 2010). To this aim, specific document filtering/search
mechanisms based on textual similarity techniques are fundamental.

In literature, several methods for document filtering/searching in a software
development context have been proposed (Happel and Seedorf, 2006), however
a large number of fundamental challenges still need to be faced. Indeed, the
great majority of these approaches is based on syntactic information retrieval
techniques (Gyimothy, Ferenc and Siket, 2005; Poshyvanyk and Marcus, 2006)).
Such approaches have found a wide application in the more general purpose
Content Management Systems (CMSs), which are commercially available and
can be easily adopted and exploited by SMEs (Varghese and Systems, 2012).

Standard syntactical search techniques (Baeza-Yates and Ribeiro-Neto, 1999)1

often suffer of low effectiveness as they are inadequate to capture the similar-
ity between documents and disregard the semantic connections (synonyms or
semantic relations) of the terms composing them. For instance, let us consider
the piece of document “...clients for your activity...” and the fragment of query
“...product requirements specified by the customer...” (e.g., from the Methodol-
ogy scenario). In a syntactical search approach, no match would be found between
the query and the document, as they have no words in common. On the contrary,
by adding semantics, i.e., synonyms and related terms (i.e., broader, narrower
or correlated terms), it is possible to discover that “customer” is a synonym of
“client” and, thus, that this document may be relevant for the query.

Other approaches make also use of semantic methods based on dictionary or
thesauri (e.g.,WordNet2) by considering synonyms and related terms (Shepherd,
Fry, Hill, Pollock and Vijay-Shanker, 2007; Sridhara, Hill, Pollock and Vijay-
Shanker, 2008). However, they do not consider the term ambiguity problem which
may affect the effectiveness of the method: a term may have more than one
possible meaning (e.g., “client” means “someone who pay for goods or services”

1 Roughly speaking, these techniques look for documents containing the same terms specified
by the user query.
2 http://wordnet.princeton.edu/
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when used in a Business context, while it means “any computer that is hooked
up to a computer network” when used in a Computer Science context). For
instance, let us consider the piece of document “Clients and servers exchange
messages in a request-response messaging pattern...”. As regards the previous
query, this document is potentially relevant, since it contains “client” which is, in
its Business sense, a synonym of “customer”. However, in this piece of document
“client” is used in a Computer Science context, thus it is not applicable to the
query.

Finally, other more complex approaches require the knowledge of technical
languages (such as SPARQL) to be used (Happel, Korthaus, Seedorf and Tom-
czyk, 2006; Kiefer, Bernstein and Tappolet, 2007; Leung, Liao and Qu, 2005; Soy-
dan, 2006; Witte, Zhang and Rilling, 2007) and thus, they are not suitable for
non skilled users in SMEs.

Starting from these considerations, in this paper we propose a fully automatic
and semantic approach for filtering/searching software documentation, carefully
considering the actual user-targets. The proposed solution significantly extends
the preliminary work presented in (Martoglia, 2011) and, building on some of
the initial ideas anticipated in the short communication (Bergamaschi, Martoglia
and Sorrentino, 2012), it aims to:

1. be easily and generally applicable/maintainable by IT SMEs: it allows users
to look for information by specifying simple keyword queries or document
queries, i.e. by simply submitting existing documents to the system; moreover,
it does not require big investments or knowledge prerequisites: it exploits the
large amounts of textual documents (i.e., methodology descriptions, and so on)
already available in each enterprise, without requiring any conversion towards
complex structured formats which would be time and cost consuming;

2. effectively and automatically identify the similarities between such queries and
a reference set of documents. The limitations of standard syntactical tech-
niques (such as the ones usually exploited by enterprise CMSs) are overcome
by considering the semantics intrinsically associated to the document/query
terms and by addressing the problem of term ambiguity through the use of
Word Sense Disambiguation (WSD). To this aim, we exploit different kinds of
external knowledge sources (both general and specific domain dictionaries or
thesauri);

3. be flexible so to become a basis of many high-level functionalities, i.e., filter-
ing software methodologies for software process assessment and improvement,
quality requirements for helping in certification process, best practices for fa-
cilitating knowledge sharing, and so on.

Our method has been studied and evaluated in the context of the European
FP7 3-years project “Facilitate IT-providing SMEs by Operation-related Models
and Methods” (FACIT-SME Project, 2010-2012), and is implemented in the
Semantic Helper component of the FACIT-SME solution.

In the rest of the paper, Section 2 gives an overview of the overall FACIT-SME
scenario and of the proposed semantic helper. In Sections 3 and 4, we focus on
the analysis and semantic techniques on which it is based. Section 5 analyzes the
related work, while the detailed experimental evaluation presented in Section 6
shows the achieved effectiveness results, going beyond typical retrieval solutions.
Finally, Section 7 concludes the work.
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Fig. 1. A schematic overview of the Semantic Helper processes.

2. FACIT-SME Solution and Semantic Helper Overview

The target of the FACIT-SME project is to promote the use of SE methods
within IT SMEs, for designing and developing their applications integrated with
the business processes in a more systematic way. Another goal is to provide effi-
cient and affordable certification of these processes according to internationally
accepted standards, and to securely share best practices, tools and experiences
with development partners and customers. The achievements FACIT-SME are
the following: a novel Open Reference Model (ORM) (ORM Architecture and En-
gineering Models, October 2010) for ICT SMEs serving as an underlying knowl-
edge Backbone; On top of the ORM, a customizable Open Source Enactment Sys-
tem (OSES)) (OSES Architecture and Component Specification, December 2010)
as IT support for the project-specific application of the ORM. More specifically,
the ORM stores existing reference knowledge for software-developing SMEs, in-
cluding different engineering methods, tools, quality model requirements, and
enterprise model fragments of IT SMEs in a computer-processable form. On top
of the ORM repository, specific search mechanisms, representing a key part of
the OSES, support the identification of adequate processes and data structures
for a specific enterprise. The inputs of the search mechanism are the company
and project information and/or the existing methodology descriptions. Then,
through a filtering phase, the organization receives a set of suggestions in the
form of the most relevant/useful elements and models in the ORM. Besides five
R&D partners providing the required competencies, the project consortium also
includes five SMEs operating in the IT domain which will evaluate the results in
daily-life applications.

The Semantic Helper is the FACIT-SME software component which im-
plements our method. The goal of the Semantic Helper is to filter and search the
relevant information available in the ORM, in two possible scenarios:

– “from scratch” scenario: assisted filtering/selection of ORM elements given
specific enterprise objectives, e.g., to give pointers to useful information for
helping the company in achieving its certification objectives;

– “from methodology” scenario: assisted suggestion proposal for a given
enterprise methodology, e.g., to help identifying relevant information or gaps
between the given methodology and the ORM methodologies.

To this end, a representation of the key parts of the ORM in a semantic and
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machine-processable way is needed. The Semantic Helper supports two main
processes to deal with textual information (see Figure 1):

1. Semantic Glossary Creation: this is an off-line process where the Seman-
tic Helper automatically extracts and “normalizes” a shared “terminology”
from the given set of ORM documents (i.e., quality requirements or soft-
ware methodologies), eventually populating the computer-processable Seman-
tic Glossary; such information will be used during the online (document re-
trieval) process. In particular, the extracted terminology is also enhanced with
statistical and semantic information (i.e., links to thesauri and domain vocab-
ularies, definitions, and synonyms);

2. Document Selection: : it is an online process where user queries are pro-
cessed and, consequently, the relevant documents are selected. First of all,
the query document (e.g., existing enterprise documentation) is analyzed by
means of the same techniques used for the Semantic Glossary creation. Once
the query has been reduced to a set of terms with associated semantics, appro-
priate semantic similarity techniques are exploited to easily identify relevant
ORM documents, and to produce a list of suggestions ranked on the similarity
(relevance) score.

The keyword extraction and enhancement phase, involved in both processes,
is detailed in Section 3.1; in Section 3.2, the structure of the semantic glossary
produced in the offline process is described, while the semantic similarity com-
putation phase, involved in the online process, is detailed in Section 3.3.

3. Semantic Helper Techniques

3.1. Keyword Extraction and Enhancement

Our goal for keyword extraction and enhancement has been to design and de-
velop an effective and easy-to-apply technique for automatically analyzing text
and extracting terms, together with their associated semantics and statistics.
In particular, we wanted to devise a flexible technique to be exploited both for
“off-line” analysis (thus working on the textual descriptions already available in
the ORM) and for “on-line” querying operations, i.e., applied on the fly to the
submitted query documents. The keyword extraction and enhancement phase is
composed by the following steps:

1. Tokenization: terms are identified and punctuation is removed;

2. Stemming: the tokens are“normalized” and“stemmed”, i.e., terms are re-
duced to their base form (managing plurals and inflections);

3. POS (Part of Speech) Tagging: the tokens are“tagged” with Part of Speech
tags (i.e., nouns, verbs, ...);

4. Composite term identification: possible composite terms (such as“product
action plan” or “product requirements”) are identified by means of a simple
state machine and of POS tags information;

5. Filtering and enhancement: by exploiting external knowledge sources, the
most relevant terms are selected and associated to additional information (such
as definitions and synonyms). More specifically, we made use of the IEEE
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TERM WN IEEE SYNS DEFS IDF DOC_LIST 
acquirer Y Y buyer, customer, 

owner, purchaser 
(1) stakeholder that acquires or procures a product 
or service from a …  

7.4961 ['QM1372'] 

acquisition Y Y outsourcing (1) process of obtaining a system, software 
product or software service … 

5.5491 ['QM0392', 
'QM0755',  … ] 

Fig. 2. An excerpt of the FACIT-SME Semantic Glossary (global view).

Software and Systems Engineering Vocabulary3, a knowledge source cover-
ing specialist terms in the project area, and the WordNet English thesaurus
(Miller, 1994), complementing the specialistic source with general knowledge
about English concepts;

6. Term statistics and weight computation: weights are computed for each
term, reflecting their relevance and meaningfulness in the document.

Even if our techniques are able to extract terms belonging to different parts
of speech, we limit the extraction to nouns, as most of the semantics of a sentence
is usually carried by noun terms (Navigli, 2009).

3.2. The Semantic Glossary

By applying batch keyword extraction and enhancement to the documents
currently available in the ORM, we achieved a first significant result in the
FACIT-SME project, i.e., the automatic generation of the Semantic Glos-
sary. This first draft can be automatically updated/enriched whenever new
content is added to the ORM, while more fine-grained user interventions for
adding/modifying/eliminating information are also possible.

The Semantic Glossary stores all the terms in all the documents with their
statistics (global view) and the terms occurrences in each document with their
statistics (per-document view). The glossary global view is an alphabetical
sort of all the extracted terms, in a tabular form. Figure 2 shows an excerpt of
it. The format is:

TERM: the extracted term;

WN: whether it is present in the WordNet thesaurus;

IEEE: whether it is present in the IEEE vocabulary;

SYNS: possible synonyms for the term (as extracted from the IEEE vocabulary
and/or WordNet);

DEFS: possible definitions for the term (as extracted from the IEEE vocabulary
and/or WordNet);

IDF: the inverse document frequency of the term in the collection;

DOC LIST: a list of the documents IDs in which the term occurs.

Note that, with “possible” synonyms and definitions, we mean the collection
of synonyms and definitions available in the knowledge sources for the different
meanings associated to the terms. The glossary per-document view is a list of

3 http://www.computer.org/sevocab



Exploiting Semantics for Filtering and Searching Knowledge in a Software Development Context7

 DOC TERM TF WEIGHT(TF*IDF) 
QM0001 iso 1 6.8024 
QM0002 management 0.3333 0.6931 
QM0002 quality 0.3333 1.0303 

Fig. 3. An excerpt of the FACIT-SME Semantic Glossary (per-doc view).

all the term occurrences in the documents, sorted by the document ID, together
with their statistics (see an excerpt in Figure 3). For each term in each document,
the view contains:

DOC: ID of the document containing the term;

TERM: the term extracted;

TF: the frequency of this term in the document, normalized by the total number
of terms in the document;

WEIGHT: the TF*IDF weight of the term.

As we will see in the next section, the content of the glossary allows the
similarity functions of the Semantic Helper to draw useful knowledge from both
the semantic and the text retrieval research areas. Moreover, by exploiting the
weight TF*IDF4 (Salton and Buckley, 1988) in the similarity computation, com-
mon terms, which are probably less meaningful, will give a lower contribute to
the final similarity (since they will have a low weight).

The similarity techniques described in the next section are designed to work
automatically without further intervention (and, as proved in Section 6, provide
encouraging results). Nevertheless, the list of synonyms and definitions retrieved
from the external knowledge sources can be automatically refined by means of
WSD techniques (as we will deeply investigate in Section 4) in order to maximize
retrieval effectiveness.

3.3. Semantic Similarity Computation

As anticipated in the past sections, the need of effectively and efficiently com-
puting similarities between documents is crucial in contexts like the one of the
project. With this goal in mind, we aim to define a document similarity formula
DSim(Dx, Dy): for a given a source document Dx = {tx1 , ..., txn} and a target
document Dy = {ty1, ..., tyn}, the formula expresses the similarity of the source
document w.r.t. the target document. In particular, the computation of DSim
between a given Dx (e.g., a given quality requirement description) and each pos-
sible submitted Dy (i.e., each available software methodology description of the
ORM) involves the following steps:

1. considering each term in Dx and finding the most similar term or terms avail-
able in Dy by exploiting a term similarity formula TSim. Computing TSim
means to identify:

(a) equal terms;

4 IDF is obtained by dividing the total number of documents by the number of documents
containing the term and then by computing the logarithm of that ratio.
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(b) synonym terms (if no equal terms are found);

(c) semantically related terms (if no synonym terms are found).

2. inducing a ranking of the available documents (on the basis of DSim), thus
predicting which documents are relevant and which are not w.r.t. Dx.

Let us now discuss in detail the proposed formulas for DSim and TSim. The
document similarity formula between a given source document Dx and a target
document Dy is shown in Equation (1): the similarity is given by the sum (defined
in (2)) of all term similarities between each term in Dx and each term in Dy

maximizing the term similarity with the term in Dx:

DSim(Di, Dj) =
∑

txi ∈Dx

TSim(txi , t
y

j(i)
) · wx

i · w
y

j(i)
(1)

ty
j(i)

= argmaxtyj∈Dy (TSim(txi , t
y
j )) (2)

where wx
i = tfx

i · idfi and wy

j(i)
= tfy

j(i)
· idfj(i). In this way, each term con-

tributes to the final similarity with a different weight, i.e., more frequent and
more significant terms contribute more to the similarity between the two docu-
ments5. TSim is computed by means of Equation (3) which considers synonyms
(thus, implicitly equal terms) and semantically related terms:

TSim(ti, tj) =


1, if ti = tj or ti SY N tj
r, if ti REL tj
0, otherwise.

(3)

Note that the case of maximum similarity (i.e. value 1) holds when the two
terms are synonyms (SY N relation). Moreover, when the two terms are in some
way related from a semantic point of view (i.e., broader/narrower terms etc.),
the formula provides a similarity value of r, where 0 < r < 1 is a user-defined
fixed similarity value.

Besides synonym information, we consider two different ways to determine
whether two terms are related. Equation (5) shows a possible way of computing
the similarity by exploiting the glosses (definitions) of the terms:

ti REL tj ⇐⇒ GSim(gl(ti), gl(tj)) ≥ Th (4)

GSim(gl(ti), gl(tj)) =
∑
| ovl(gl(ti), gl(tj)) |2 (5)

Two terms are in relation REL, thus semantically related, if their gloss sim-
ilarity, GSim exceeds a given threshold Th. The Literature presents many pos-
sible ways of computing similarities between glosses (Navigli, 2009). We decided
to use the extended gloss overlap measure (Banerjee and Pedersen, 2003) shown
in (7), being it one of the most popular and effective. It quantifies the similarity
between the two glosses by finding overlaps in them (the similarity is the sum
of the squares of the overlap lengths). If one or both terms are associated to
more than one gloss, the formula returns the similarity between the two closest
glosses.

5 Note that, Equation (1) is not meant to be symmetric, instead it is conceived so to facilitate
the ranking of documents Dy w.r.t. document Dx. In case symmetry is needed, the summation
in (1) can be extended to the terms of both documents.
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Exploiting the relations between terms coming from the WordNet thesaurus
is another possibility to compute semantic relatedness. Indeed, in WordNet terms
are associated to one or more different meanings (or senses), and each term is
then is connected to other terms meanings by hypernym (i.e., “is-a”) relations6

(Miller, 1994). We adopt one of the most widely used methods in knowledge
management, relying on the hypernym relations:

tiRELtj ⇐⇒ HSim(ti, tj) ≥ Th (6)

HSim(ti, tj) =

{
−ln len(ti,tj)

2H , if ∃ lca(ti, tj)

0, otherwise.
(7)

In our case, two terms are semantically related if their hypernym similarity
HSim exceeds a given threshold Th. In particular, the HSim shown in (7)
derives from the works (Mandreoli and Martoglia, 2011; Leacock and Chodorow,
1998) and computes a score which is inversely proportional to the length of
the shortest path connecting the (senses of the) two terms. H is a constant
representing the maximum depth of the hypernym tree, which for WordNet is
defined as 16. On the other hand, the similarity is 0 if the two terms are not
connected in the WordNet hypernym structure.

Let us now see how the keyword extraction/enhancement and semantic tech-
niques, we just presented, can be used in the context of a small illustrative
example.

Example 1. Let us suppose that D1 is a fragment of a document available in
the ORM repository:

D1. “How to get more clients for your small business enterprise”

Given the following queries:

Q1. “product requirements specified by the customer”
Q2. “our organization’s design takes a hierarchical structure”

D1 has no terms in common with both Q1 and Q2. However, by using the
Semantic Helper techniques, we can easily determine that D1 might contain
information potentially relevant to Q1, as “customer” is a synonym of “client”.
Further, by analyzing the semantic similarity of the terms in Q2 w.r.t. those
already available in the Semantic Glossary, the term “organization” can easily
be found as strictly related to “enterprise” by means of formulas (5) or (7).
Therefore, D1 will also be presented as a possible “suggestion” for Q2, even if,
typically, with a lower score (related terms usually contribute to weaker scores
than synonyms or equal terms). �

4. Beyond Term Ambiguities: Sense-Aware Techniques

Human Language is intrinsically ambiguous, and terms may be polysemous, i.e.,
they may have different senses (or meanings) on the basis of the context where

6 We recall that ti is said to be a hypernym of tj if there exists a ti’s meaning that includes
(i.e., is a hypernym) of a meaning of tj : for instance, “electronic device” is a hypernym of
“computer”.
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they are used. For example, as we have previously seen in Section 1, the term
“client” may be employed in a Business context with the meaning of “customer”
or in a Computer Science context with the meaning of “computer”. Therefore,
when user queries and/or documents contain polysemous terms, the similarity
techniques described so far may not be sufficient to compute document similar-
ity, and several non-relevant documents might be returned. Let us consider two
motivating examples.

Example 2. Starting from the scenario illustrated in Example 1, let us suppose
that the ORM contains also document D2:

D2. “Distributed applications partition workloads between the servers and clients”

As regards the query Q1, both documents are potentially relevant, since they
both contain the term “client” which is, in its Business sense, a synonym of
“customer”. However, while in D1 “client” is used in its Business sense, in D2
it is used in a Computer Science context: in this case, only D1 is pertaining to
the user query, while D2 should be discarded. �
Example 3. Let us now consider the following additional query:

Q3. “manage the risk of computer breakdown to avoid losing information”

This query has no terms in common with the documents. However, by analyzing
their semantic similarity, we can find out that the term “computer” in Q3 is
strictly related to the term “client” by means of formula (7), as “computer” is
a hypernym of “client” in WordNet. However, this is true only when “client” is
used in a Computer Science context. As a consequence, only document D2 is
relevant to the query. �

To address term ambiguity problems in the FACIT-SME context, the idea
is to exploit Word Sense Disambiguation (WSD), i.e., a Natural Language Pro-
cessing technique for automatically (or semi-automatically) identifying the sense
of a term in a context (Navigli, 2009). Indeed, term senses represent strategic
information in order to avoid such “pitfalls” as the ones illustrated in the above
examples. Specifically, by using WSD, we can improve the searching/filtering
mechanisms in two ways: (1) by excluding documents containing false-synonyms
of the query keywords (such as terms “client” and “customer” in Example 2);
(2) by excluding documents containing false-related terms (as discussed in Ex-
ample 3 for document D1). As further examples of the first aspect, in WordNet
both terms “customer” and “node” are potential synonyms of “client”; however,
when “client” is used in a Business context, only “customer” is a true-synonym,
while “node” is a false-synonym. As to the second aspect, the term “client” is
related to the term “website” only when it is used in a Computer Science con-
text, while when it is in a Business context, “website” represents a false-related
term.

Starting from these considerations, we decided to enhance the Similarity
Techniques employed in the FACIT-SME Semantic Helper, by including the sense
information deriving from the application of WSD techniques. In the following
sections, we describe the extensions needed to make the Semantic Glossary and
the similarity formulas aware of the senses of terms in their context7.

7 In the following, we will denote the new sense-discerning techniques as “sense-aware”, while
the original ones described in Section 3 will be denoted as “all-senses”.
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4.1. Sense-Aware Extensions to the Keyword Extraction and
Enhancement

WSD is usually applied on text and it is performed w.r.t. a knowledge source
(e.g., glossaries, thesauri or dictionaries) representing the sense inventory (i.e.,
all the possible meanings of terms) (Navigli, 2009). As previously described, the
Semantic Helper makes use of two knowledge sources: the IEEE vocabulary and
WordNet. The main differences between these two sources are in:

1. Coverage: the IEEE vocabulary includes only terms and senses belonging to
the Computer Science domain, and thus, it does not contain common terms like
“people” and “work”, which instead may be present in queries and documents;
on the contrary, WordNet covers a wide range of domains but it misses several
specific terms belonging to the FACIT project domain (e.g., “regression test”
or “testability”);

2. Granularity: the IEEE vocabulary makes such a fine-grained sense distinction
that for many users it is often difficult to distinguish between senses (e.g.,
for “architecture” two distinct senses exist for “fundamental organization of a
system embodied in its components” and “organizational structure of a system
and its implementation guidelines”); on the contrary WordNet makes coarser-
grained sense distinctions (for instance, distinguishing between “profession of
designing buildings” and “organization of a computer’s hardware or system
software”).

As described in (Palmer, Dang and Fellbaum, 2007), the performance of
WSD strictly depends on the granularity of the sense distinctions, which should
be selected on the basis of the application. In a software development context,
we do not need a fine sense distinction; instead, errors may typically come out
when terms have orthogonal senses (as in the case of “client”). Starting from
these considerations, we decided that we needed WSD only for terms existing in
WordNet. If a term does not exist in WordNet, we check if it is present in the
IEEE vocabulary, and in this case, we associate the first sense proposed to it.

We used the STRIDER WSD algorithm described in in (Mandreoli and Mar-
toglia, 2011; Mandreoli, Martoglia and Ronchetti, 2005) to perform WSD; other
WSD algorithms might be employed as the ones described in (Po and Sor-
rentino, 2011), developed in the context of the MOMIS Data Integration System
(Beneventano, Bergamaschi, Guerra and Vincini, 2001), and in (Navigli, 2009).
STRIDER is designed to perform effective disambiguation of terms w.r.t. the
WordNet thesaurus, also managing structures that go beyond plain text (e.g.,
nodes in XML trees or RDF graphs). Its outcome is a ranking of the plausible
senses for each term, from which the top sense is automatically suggested.

STRIDER returns an annotation, A(ti) = sj , where sj is the top sense of
a ranking {sj , ..., sk} of plausible senses for each term ti occurring in a given
document D. We apply WSD to all the documents available in the ORM: WSD
becomes a new step to be performed during the keyword extraction and enhance-
ment phase (see Section 3.1). Further, the Semantic Glossary structure needs to
be extended for storing the WSD information: we need to associate each term to
the corresponding annotation and the list of documents where the term is used
with that sense, thus going toward a sense-aware semantic glossary.

We modified the previous Semantic Glossary structure in the following way:
all references to terms (also including synonyms, frequency information, and
so on) become references to senses. Figure 4 shows an excerpt of the sense-
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ANNOTATION WN IEEE SYNS DEFS IDF DOC_LIST 
bank#1 Y - banking_concern#1, 

depository_financial_institution#1,  
banking company#1 

a financial institution that accepts 
deposits and channels the money into 
lending activities. 

0.6931 [D1] 

business 
enterprise#1 

Y - commercial_enterprise#2, 
business#2  

the activity of providing goods and 
services involving financial and 
commercial and industrial aspects. 

1.795 [D2] 

client#3 Y - guest#4,  node#7 any computer that is hooked up to a 
computer network; etc. 

1.624 [D1] 

computer#1 Y - computing_machine#1, 
computing_device#1, 
data_processor#1, 
electronic_computer#1, 
information_processing_ system#1 

a machine for performing 
calculations automatically 

1.538 [D1] 

customer#1 Y - client#2 someone who pays for goods or 
services 

0.952 [D2] 

... ... ... ... … ... ... 

Fig. 4. An excerpt of the Sense-Aware Semantic Glossary extracted from D1 and D2 (global
view).

aware Semantic Glossary (global view), as extracted from documents D1 and
D2 of our previous examples. As we can see, the TERM column becomes the
ANNOTATION column, containing the annotation information in the form
“term#senseIndex” (e.g., “client#3” means that the term “client” has been an-
notated with the third sense proposed by the knowledge source). Moreover, TF,
i.e., term frequency, becomes AF (annotation frequency), i.e., the frequency of a
specific term annotation.

The other columns do not change their name but have some significant
changes in their content: WN and IEEE inform whether the annotation is w.r.t.
WN or w.r.t. the IEEE vocabulary; SYNS contains the synonym annotations
(e.g., for the ANNOTATION “client#3”, it contains “guest#4” as the fourth
meaning of “guest” is a synonym of the third sense of client); DEFS contains
only the definition corresponding to the annotation (e.g., for “client#3”, “any
computer that is hooked up to a computer network”); DOC LIST contains the
list of documents in which the term occurs with the same annotation; finally,
IDF and WEIGHT are computed on the basis of the annotation frequency AF.

4.2. Sense-Aware Semantic Similarity

We now need to enhance the document similarity techniques in order to fully
exploit the new information available in the sense-aware Semantic Glossary. In
particular, the formula DSim(Dx, Dy) has to be modified; we define the revised
DSim as:

DSim(Dx, Dy) =
∑

txi ∈Dx

SSim(A(txi ), A(ty
j(i)

)) · wx
i · w

y

j(i)
(8)

A(ty
j(i)

) = argmaxtyj∈Dy (SSim(A(txi ), A(tyj ))) (9)

where A(txi ) is the annotation of the i-th term in document x (i.e., the sense
associated to term ti in document x), and A(tyj ) is the annotation of the j-th term

in document y (i.e., the sense associated to term tj in document y). SSim is a
sense similarity function which computes the similarity between two annotations,
i.e., between the senses associated to two terms. It is defined as follows:
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SSim(A(ti), A(tj)) =


1, if A(ti) SY N A(tj)

r, if A(ti) REL A(tj)

0, otherwise.

(10)

where A(ti) SY N (tj) means that the two annotations are the same. The
REL relation can be computed, as always, through the functions HSim and
GSim; the only difference in this case is that, instead of considering all the
possible senses for a term, we restrict the computation to the senses specified in
the annotations. Thus, the sense-aware formulas for GSim and HSim will be:

GSim(gl(A(ti)), gl(a(tj))) =
∑
| ovl(gl(A(ti)), gl(A(tj))) |2 (11)

HSim(A(ti), A(tj)) =

{
−ln len(A(ti),A(tj))

2H , if ∃ lca(A(ti), A(tj))

0, otherwise.
(12)

4.3. Sense-Aware Techniques in Practice

When a user submits a query, the Semantic Glossary already contains the term
document annotations A(tyj ) ∈ Dy. Therefore, at run time, we need to apply our
WSD algorithm only to the user query’s terms.

Notice that there exist cases where it is not convenient to apply WSD to
the query terms. Let us consider, for instance, a possible keyword query “guest
address”: in this case, if no other keyword is available, there is not enough context
information to determine if “guest” is a computer in the network or a visitor,
as well as if “address” means a computer address or a street address. As a
consequence, in this and in other similar cases, we consider all the possible senses
for the query terms, since WSD would not have sufficient information to perform
annotations. Further, we still apply formulas (8, 9, 10) by computing SSim
for each possible annotation of the query terms (and, then, by considering the
maximum value). We conclude the section by providing an example of how the
sense-aware similarity techniques actually work on a simple case.

Example 4. Let us consider query Q1 and documents D1 and D2 of our pre-
vious examples. As previously seen, for this query only document D1 should be
returned by the semantic helper, while document D2 should be discharged. Let
us see how this is accomplished by our sense-aware techniques.

The Semantic Glossary shown in Figure 4 is obtained after the applica-
tion of the Semantic Glossary process described in subsections 3.1 and 3.2. The
composite term identification step identifies the composite term “business enter-
prise” and “client request”. Neither WordNet nor the IEEE vocabulary provide
an entry for “client request”: in these cases, we consider and disambiguate the
single terms (i.e., “client” and “request”)8. Then, we automatically disambiguate
the query terms. The returned query annotations are: client#3, server#3, and

8 Other approaches to deal with composite terms, as the one described in (Sorrentino, Berga-
maschi and Gawinecki, 2011), could be employed.
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communication#1. Now, we can compute the document similarity between Q1,
D1 and Q1, D29:

DSim(Q1, D1) =
∑

tQ1
i ∈Q1

SSim(A(tQ1
i ), A(tD1

j(i)
)) · wQ1

i · w
D1
j(i)

= 0.8

DSim(Q1, D2) =
∑

tQ1
i ∈Q1

SSim(A(tQ1
i ), A(tD2

j(i)
)) · wQ1

i · w
D2
j(i)

= 0

i.e., the similarity between Q1 and D2 is null, and only D1 is selected as
relevant for the query.�

5. Related Work

In literature, several approaches applying syntactic information retrieval tech-
niques to specific software engineering tasks have been proposed. For instance,
the well-established notions of vector space model, tf-idf weighting and pre-
processing techniques for stemming and stopword removal are exploited in a
number of works (e.g., (Gyimothy et al., 2005; Poshyvanyk and Marcus, 2006;
Trakarnviroj and Prompoon, 2012)), as also noted in a recent survey on sofware
maintenance and evolution (Binkley and Lawrie, 2010). Generally speaking, such
methods are focused on very specific tasks or scenarios (and, therefore, specific
kinds of input information). Their results confirm the possible applicability of
standard information retrieval techniques (such as the ones from which we started
to devise our approach) to SE scenarios, even if they are limited by the absence
of semantic analysis.

A “classic” information retrieval foundation also characterizes the more gen-
eral purpose CMSs which are commercially available and can be easily adopted
and exploited by SMEs (Varghese and Systems, 2012) (a notable example is
Alfresco10). Similarly to our approach, the automatic nature, general applica-
bility and ease of use of these CMSs makes it easy to search for information
also for non skilled users, for instance by allowing them to compose queries in
a simple keyword-based way. However, in such CMSs only syntactic features are
exploited, while the semantics of terms is not taken into account, therefore lim-
iting the achievable results (see also Section 6 for an experimental comparison
with our technique).

Several papers tried to go beyond syntactic retrieval techniques, showing the
possible benefits of exploiting semantic knowledge-based methods for specific SE
tasks (Gall, Lukins, Etzkorn, Gholston, Farrington, Utley, Fortune and Virani,
2008; Girardi and Ibrahim, 1994; Shepherd et al., 2007; Sridhara et al., 2008;
Udomchaiporn, Prompoon and Kanongchaiyos, 2006). In fact, standard reuse
repositories are limited to plain syntactical search and generally suffer from low
effectiveness, as it was also stated in (Happel and Seedorf, 2006). On the other
hand, knowledge-based approaches can really enhance the effectiveness of the
component reuse task by proposing the usage of semantics. In (Girardi and
Ibrahim, 1994) a software reuse system based on the processing of the natural
language descriptions of software artifacts is described. The retrieval mechanism

9 In this example, we set for GSim a default threshold of 10 and for HSim a default threshold
of 0.25.
10 http://www.alfresco.com/). Other commercial tools offer analogous functionalities.
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is based on a similarity analysis which exploits synonym, hypernym and hyponym
relationships extracted from WordNet. In (Shepherd et al., 2007) the authors
propose a tool called FindConcept able to expand search queries with synonyms
from WordNet. Furthermore, other notable works propose and present methods
for retrieving information from specifically structured software documents or
artifacts. For instance, in (Girardi and Ibrahim, 1994; Sridhara et al., 2008)
the retrieving process is performed by focusing on the comments that can be
found all through the software code. The approach (Gall et al., 2008) is based
on semantic metrics, calculated by first extracting class names and the relevant
paragraps from IEEE-formatted design documents.

Generally speaking, most of the available knowledge-based SE methods can-
not be directly compared to ours, since they offer solutions tailored for very spe-
cific SE tasks and/or very specifically structured documents, rather than a gen-
eral method that can be applied on any kind of textual documentation without
any preparation or prerequisite. Further, most available approaches limit their se-
mantic features to the use of synonyms and related terms extracted from general
lexical resources such as WordNet (Shepherd et al., 2007; Sridhara et al., 2008).
Instead, as WordNet does not contain several software engineering terms, we
chose to also exploit specific domain vocabularies for the Software Engineering
context. Further, we take advantage not only of synonyms and related terms but
also of WSD techniques able to capture the meaning of terms in a context.

Finally, some approaches go even beyond the above mentioned semantic tech-
niques by exploiting formal descriptions and representations of the software
information (Constantopoulos, Jarke, Mylopoulos and Vassiliou, 1995; Happel
et al., 2006; Kiefer et al., 2007; Leung et al., 2005; Mylopoulos, Borgida, Jarke and
Koubarakis, 1990; Soydan, 2006; Witte et al., 2007). For instance, (Mylopoulos
et al., 1990) exploits the popular Telos language to represent requirements, design
and code; other approaches make use of ontologies to describe the functionality
of components (Happel et al., 2006; Kiefer et al., 2007; Leung et al., 2005; Soy-
dan, 2006). The use of such knowledge representation formalisms allows conve-
nient and powerful querying, for instance by using SPARQL (Happel et al., 2006).
However, this kind of approaches requires expert knowledge management skills
in order to create the queries. Moreover, the use of specialized ontologies requires
their complete update when new sources (e.g. new documents) are added to the
repository, making these solutions hardly suitable or even applicable in the con-
text of small enterprises. The discussion on integrating SE and KE approaches
has been, in many cases, too academic, often neglecting the applicability and
usability issues, as observed in (Happel and Seedorf, 2006). On the contrary, our
method allows anyone to create queries by simply using keywords (or already
existing pieces of documentation), while offering at the same time the benefits
given by advanced semantic document management.

6. Experimental Evaluation

In this section, we present the results of the evaluation of our tool within the
FACIT-SME project. We collected a set of 1500 documents in the domain of
quality requirements, containing approximately 25000 words in total, taken from
project partners and from well-known quality models, such as CMMI (Carnegie
Mellon University Software Engineering Institute, 2006) and ISO 9000 (DIS
9001:2000 Quality Management Systems - Requirement (pdf), 1999). Starting
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Main keywords extracted from the queries

Q1 ISO,%Interface,%requirement,...
Q2 configuration%management%system,%project%management,...
Q3 supplier,%traceability,%identifier,...
Q4 methodology,%purpose,%recovery,...
Q5 audit,%environment,%brainstorming,...
Q6 hardware,%software,%documentation,...
Q7 market,%provider,%work,...
Q8 scheme,%organization,%skill,...
Q9 area,%meeting,%%plan,%solution,...

Query 
Number  

Fig. 5. The keyword queries we selected for the Semantic Helper evaluation.

from this set of documents, we automatically generated a Semantic Glossary and
obtained as a result 903 different terms extracted from the documents. Then,
we considered and evaluated 100 typical queries which are usually submitted
by FACIT-SME partners with reference to this collection; each query is either
composed by a short text containing candidate keywords (80 queries), as in the
“From Scratch” scenario of the project, or by a whole document (20 queries),
according to the “From Methodology” scenario. In the following, for clarity of
presentation and without loss of generality, we present the results we obtained
on a reduced sample set of queries which is representative of the results we ob-
tained on the whole set. In particular, (Q1−Q9) are the queries executed for the
“From Scratch” scenario, while queries QT1 − QT4 are the existing enterprise
documents selected for the “From Methodology” scenario. Figure 5 shows the
main keywords contained in Q1 − Q9 queries; on the other hand, documents
QT1−QT4 are very large and it is not possible (nor useful to the this analysis)
to summarize them to a few keywords. In the majority of the original considered
queries, they were mostly constituted by specific domain terms (queries Q1−Q6
capture this fact), while queries Q7−Q9 are representative of less common (and
ambiguous) requests. Each query has been processed by the proposed techniques
so to generate a set of possible “suggestions”, i.e., pointers to the relevant docu-
ments in the collection: “all-senses” will be specifically analyzed in Section 6.1,
“sense-aware”, in Section 6.2).

For evaluating the effectiveness of our approach, we compared the output of
the Semantic Helper, for each query, with a “gold standard”, i.e. the relevant
answers manually selected from the set of documents by experts in the field.
Two baselines representing typical syntactic retrieval methods are also consid-
ered in order to fully understand the benefits of the semantic features. Finally,
Section 6.3 concludes the evaluation and is specifically devoted to analyse in de-
tail the effectiveness of the proposed ranking and scoring techniques; therefore,
it will focus on the “larger” QT1−QT4 queries.

6.1. Effectiveness of All-Senses Techniques

The first analysis we conducted was to assess the quality of the all-sense semantic
similarity techniques results (sense-aware extensions will be discussed in the next
section) in terms of precision and recall, which are typical evaluation metrics in
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Prec Rec F Prec Rec F Prec Rec F
Q1 1.000 1.000 1.000 1.000 1.000 1.000 0.011 0.420 0.022
Q2 1.000 1.000 1.000 1.000 1.000 1.000 0.005 0.330 0.010
Q3 1.000 1.000 1.000 1.000 0.969 0.984 0.946 0.240 0.383
Q4 0.947 1.000 0.973 1.000 0.079 0.146 0.921 0.321 0.476
Q5 0.878 1.000 0.935 1.000 0.077 0.143 0.986 0.235 0.380
Q6 0.923 0.949 0.936 1.000 0.333 0.500 0.967 0.369 0.534
Q7 0.839 0.837 0.838 1.000 0.642 0.782 0.901 0.421 0.574
Q8 0.313 0.781 0.447 0.712 0.303 0.425 0.653 0.288 0.400
Q9 0.203 0.688 0.313 0.652 0.043 0.081 0.467 0.029 0.055

Query
Our results

No sem syn/rel No kw sel
Typical Enterprise CMS Baselines

(All-senses)

Fig. 6. Effectiveness analysis: precision, recall and F-measure (standard results for all-senses
techniques on the left, two baselines on the right).
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Fig. 7. Effectiveness analysis: graphical comparison for F-measure (all-senses techniques vs
two baselines).

the information retrieval field11 (Baeza-Yates and Ribeiro-Neto, 1999). Figure 6
shows the results for Q1−Q9 (left part of figure). The shown results are obtained
with the gloss similarity as similarity function for IEEE terms and the hypernym-
based one for WordNet terms. Besides precision and recall, we also report their
weighted harmonic mean (F-measure).

Further, in order to emphasize the contribution and benefits of these tech-
niques w.r.t. the ones typically available in commercial tools used by SMEs,
we also present the results concerning two baselines (right part of Figure 6):
(1) the syntactic retrieval method offered by most enterprise CMSs such as Al-
fresco, where synonyms and related terms are not handled and only exact match
among terms is allowed (see also Section 5); (2) another syntactic method not ex-
ploiting the keyword enhancement phase. The comparison between the achieved
F-measures is also graphically shown in Figure 7. Let us now analyze the results
in detail.

In Figure 6, the precision and recall levels achieved by the semantic similarity
techniques on all the queries are shown. The levels on the queries (Q1Q6) are very
satisfying (equal or higher to 0.84 and 0.90, respectively). In general, the pro-

11 Precision is defined as the fraction of retrieved documents which are known to be relevant,
recall is the fraction of known relevant objects which were actually retrieved.
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cessing of all queries greatly benefits from the keyword extraction/enhancement
phase: in fact, without it, recall levels significantly drop to 0.2-0.4 (for instance,
different inflections of the same term are not correctly identified). Keyword en-
hancement can also bring great benefits in precision as, for instance, in Q1 and
Q2: since they contain, among others, composite expressions, such as “interface
requirement” (Q1) or “configuration management system” (Q2), not correctly
identifying them leads to a large number of irrelevant retrieved documents (in
the second baseline, precision drops to less than 0.01, compared to 1 for the stan-
dard results). Queries Q3−Q6 require synonyms and related terms management
in order to provide satisfying answers: for instance, one of the key terms in Q3 is
“supplier”, a concept which is expressed as “vendor” in some of the documents
(recall goes from 1 to 0.96 of the first baseline), while Q4 contains “purpose”
which is mostly expressed as “objective” in the collection (recall drops from 1
to less than 0.08). The same holds for the related terms: by applying the gloss
similarity formulas exploiting the IEEE definitions, we achieve near-perfect re-
call levels (as opposed to the less than optimal ones of the first baseline), also
maintaining high precision levels for (queries Q1−Q6). For example, most doc-
uments containing “review” are also relevant to Q5, which contains “audit”; the
ones containing “document” are also relevant to Q6 asking for “documentation”,
and so on.

Queries Q7 − Q9 obtained less satisfying levels of precision and recall, due
to the presence of several common terms that are not present in the specialized
IEEE vocabulary and for which only the use of WordNet similarity is allowed.
Even if in some cases, as in Q7, the WordNet based similarity proves equally
useful as the gloss based one, in other cases (as in Q8 and Q9) it leads to several
false-positives. This is mainly due to the non-specialized nature of the WordNet
thesaurus, which covers several domains and thus, unlike IEEE, includes highly
polysemic terms (e.g., “area” and “subject”). In the next section, we will see
how the sense-aware techniques can significantly improve the obtained results.

6.2. Impact on Effectiveness of Sense-Aware Techniques

In this section, we are interested in evaluating the effect of the WSD process
on the semantic similarity techniques. To this end, we applied the sense-aware
similarity techniques to the queries Q1 − Q9. Figure 8 shows the results of the
sense-aware similarity techniques (queries Q6−Q9) by comparing precision (Fig-
ure 8-a), recall (Figure 8-b) and F-Measure (Figure 8-c) to the ones obtained with
the all-senses similarity techniques.

For the queries Q1−Q6, the sense-aware extensions behave in a similar way,
with reduced improvements over the results presented in the previous section
(differences in terms of 0.04 in precision or less). Thus, for sake of simplicity,
we report in Figure 8 only the results for query Q6. The motivations are the
following. Queries Q1 − Q6 mainly contain specific and technical terms (e. g.,
“ISO”, i.e., the acronym for “International Organization for Standardization” or
“traceability”) existing only in the IEEE vocabulary and not in WordNet. As a
consequence, these terms are typically not affected by disambiguation issues (see
Section 4). Moreover, these queries contain several terms existing in WordNet
but with a unique meaning (i.e., monosemic terms, e.g., “software” or “identi-
fier”) or with few strongly related meanings (e.g., “methodology”, “hardware”,
or “recovery”).
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Q6# Q7# Q8# Q9#
Sense+aware# 0.946# 0.828# 0.754# 0.634#

All+senses# 0.949# 0.837# 0.781# 0.688#
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Fig. 8. Improvements achieved by the sense-aware techniques over the all-senses ones: a)
precision, b) recall, c) F-measure.

On the contrary, the use of WSD is able to significantly improve the accuracy
of the document retrieval process for queries Q7−Q9 (see Figure 8), for which
we obtained an average increment in precision of 0.53. The main reason for these
results is that these queries are more ambiguous than Q1 −Q6 as they contain
general terms, which might be related to several documents. For instance, query
Q9 greatly benefits from WSD, as it contains, among others, the term “area”:
this term may mean a “geographical region” (as in Q9) or “a subject of study”.
ORM documents are usually not about “area” as “geographical region”, while in
several ones “area” has the “a subject of study” sense. Without disambiguation,
we obtained several false positive documents corresponding to “area” with the
“subject of study” sense and other documents containing false related terms,
such as “topic”, “issue” and “subject”. The same happens for query Q8 contain-
ing, among others, the general and polisemic term “scheme”, which can assume
several meanings, such as a “strategy”, a “dodge”, a “system” etc.

As regards to query Q7, by using WSD we were able to achieve perfect
precision. In this case, the improvement w.r.t. the all-sense technique is of 0.16,
which is a smaller increment than for Q8 and Q9: this is due to the fact that,
even if the query contains common terms, their meaning is the same as in the
majority of their occurrences in the ORM documents. For instance, in Q7, the
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Prec Rec F Prec Rec F
Q7 1.000 0.886 0.940 1.000 0.886 0.940
Q8 1.000 0.579 0.733 0.552 0.619 0.584
Q9 1.000 0.063 0.119 0.293 0.063 0.104

Prec Rec F Prec Rec F
Q7 1.000 0.837 0.911 0.839 0.837 0.838
Q8 0.982 0.769 0.863 0.312 0.778 0.445
Q9 0.961 0.568 0.714 0.203 0.575 0.300

Query
Semantically rel. terms Semantically rel. terms

Sense-aware All-senses

Query
Synonyms Synonyms

Sense-aware All-senses

Fig. 9. Impact of WSD on the specific aspects of semantic similarity: use of synonyms (top)
and use of semantically related terms (bottom).

term “market” is used in the “commercial activity” meaning: the ORM document
collection includes several documents containing “market” with this meaning.

On the other hand, as we can note from Figure 8-b, recall is only slightly
affected by WSD: we obtained very similar results to the all-senses ones, with
a decrease of 0.093. The reason is that WSD mainly performs a pruning action
w.r.t. the document collection: in nearly all cases, the documents containing the
query terms with the correct sense are preserved, while the irrelevant ones are
correctly pruned out (this effect will be even clearer in the ranking analysis we
provide in the next section).

We are now interested in investigating the impact of the WSD process on
the single similarity techniques composing the method: in particular, we will in-
vestigate how WSD affects the use of synonyms and the use of related terms in
the document similarity computation. We focus on Q7−Q9. Figure 9 compares
the results obtained by the sense-aware (on the left) and the all-senses (on the
right) similarity techniques, by using only synonyms (top of figure) and only
semantically related terms (bottom). We can note that both synonyms and re-
lated terms greatly benefit from the use of WSD. In particular, while recall is
again almost unchanged (with an average decrease of 0.09), precision is strongly
improved (with an average improvement of 0.46). The unique exception is rep-
resented by Q7 for which we obtained a slight improvement in using WSD with
related terms. As previously observed, this result is due to the fact that Q7 rep-
resents the case of queries containing ambiguous terms that are present in the
document collection with a unique meaning.

In conclusion, by analyzing the overall performances obtained by using the
sense-aware similarity techniques, we can observe that, independently from the
ambiguity of query terms, we can safely use WSD, as it improves precision (w.r.t.
the all-senses techniques) without significantly decreasing recall. Moreover, as we
will see in detail in the next section, WSD helps in positioning the most relevant
documents among the top documents in the ranking.

6.3. Detailed Ranking Effectiveness Evaluation

In this section, we will deepen the effectiveness analysis by considering queries
QT1−QT4, in the form of actual text documents typically used in the FACIT-
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Fig. 10. In-depth analysis for all-senses techniques (QT1, on the left) and for sense-aware
vs all-senses (QT4, on the right): precision at standard recall levels (top) and distance from
optimal ranking (bottom)

SME environment, for which to find related documents in the collection. Dif-
ferently from Q1 −Q9, these queries may contain a large number of terms and
produce a very large number of results. For this reason, it is essential to evalu-
ate not only which answers are returned but also their scores and the induced
ranking, assessing whether the best suggestions are returned in the top positions
and, thus, whether the proposed weighting scheme is effective.

We start this analysis by assessing the impact of the use of weights and
synonyms/related terms on the all-senses techniques described in Section 3.3
(Figure 10). To this end, we consider queries QT1 and QT2, whose majority
terms are very specific and technical (as in queries Q1−Q6). In Figure 10 (left
part) we show, for QT1 and all-senses techniques, the precision values obtained
at different recall levels, i.e., when a given percentage of relevant documents
have been found (top), and the distance from the ideal ranking (bottom). The
all-senses technique is compared to two baselines: a non-weighted version of the
DSim which does not consider the term weights (i.e., essentially, they are fixed
to 1) and the non-semantic CMS-like retrieval method which does not consider
synonyms and related terms. Notice that the all-senses technique achieves high
precision levels even at high recall levels: for instance, at recall level 0.6, the
precision is still 1, while the baselines’ precision levels have already dropped
lower than 0.03. This confirms that our techniques are able to identify the most
significant terms in the queries, without being misled by non-relevant ones. The
optimal ranking distance analysis confirms the goodness of the retrieved results:
for each alternative, the curve represents the normalized Spearman footrule dis-
tance (Diaconis and Graham, 1977) between the retrieved and the ideal ranking,
i.e., the normalized sum of the absolute values of the difference between the
ranks. For QT2 we found an equally good performance with very similar graphs,
therefore we will not show them in detail.

Finally, we were interested in evaluating how the sense-aware techniques con-
tribute to a highly effective ranking. We considered documents QT3 and QT4,
containing a large percentage of common/ambiguous terms, which are well suited
to stress the effectiveness of the proposed techniques on difficult requests. The
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right part of Figure 10 shows the results we obtained for QT4 (QT3 showed sim-
ilar trends): as we can see, the precision is kept high even at high recall levels,
and the distance from optimal ranking is kept much lower than for the all-senses
techniques. This once again shows the positive impact of the WSD technique,
which gives a key contribution in retrieving the most relevant results among the
first ones in the ranking.

7. Concluding Remarks

In this paper we proposed a fully automatic and semantic approach for fil-
tering/searching software documentation, carefully considering the actual user-
targets, IT-SME.

Our approach has been studied and evaluated in the context of the European
FP7 3-years project “Facilitate IT-providing SMEs by Operation-related Mod-
els and Methods (FACIT-SME)”, and is implemented in the Semantic Helper
component of the FACIT-SME solution.

The main achievements and effectiveness of the proposed approach, as docu-
mented by the experimental section, are the following:

– Firstly, it is an easyly and generally applicable/maintainable tool for IT SMEs
to look for information in their large amounts of already available textual doc-
uments (i.e., methodology descriptions, and so on); this is done by specifying
simple keyword queries or document queries, without requiring any conversion
towards complex structured formats which would be time and cost consuming;

– Secondly, the tool is able to automatically identify the similarities between
such queries and a reference set of documents. The limitations of standard
syntactical techniques (such as the ones usually exploited by enterprise CMSs)
are overcome by considering the semantics intrinsically associated to docu-
ment/query terms and by addressing the problem of term ambiguity through
the use of WSD algorithms. To this aim, we exploited different kinds of external
knowledge sources (both general and specic domain dictionaries or thesauri);

– Thirdly, its flexibility enables many high-level functionalities, i.e., filtering soft-
ware methodologies for software process assessment and improvement, quality
requirements for helping in certication process, best practices for facilitating
knowledge sharing, and so on;

– Finally, the approach does not have any prerequisite, such as the knowledge
of complex formal representation/querying standards or the need of convert-
ing/updating the documentation already available in the enterprise. To this
end, our proposal leverages on the strengths of both classic information re-
trieval and of knowledge-based techniques, without impairing general applica-
bility and usability.

Several paths will be contemplated as future work:

– We will further analyze and refine the similarity techniques, user feedback on
the retrieved suggestions, multilanguage information management and query-
ing support;

– We will investigate how techniques we developed in complementary contexts,
such as multi-version semi-structured data management (Grandi, Mandreoli,
Martoglia, Ronchetti, Scalas and Tiberio, 2008), could help in the exploitation
of other non-textual knowledge available in the ORM repository;
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– Leveraging on our previous works on Peer-to-Peer network (Beneventano,
Bergamaschi, Guerra and Vincini, 2005; Mandreoli, Martoglia, Penzo and Sas-
satelli, 2009), we will extend our approach in this direction. Indeed, large
software development projects are complex endeavors that involve numerous
participants which can work across several sites and act in various roles; there-
fore, we will also consider notable past experiences such as (Happel, Maalej and
Stojanovic, 2008), where a Peer-to-Peer based metadata management seman-
tic technologies was proposed as an important enabler to improve information
and knowledge sharing in such scenarios.
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