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Abstract. Translation is a repetitive activity. The attempt to automate such a difficult
task has been a long-term scientific dream; in the past years research in this field has
acquired a growing interest, making some forms of Machine Translation (MT) a reality.
Among the several types of approaches in MT, one of the most promising paradigms
is MAHT and, in particular, example-Based Machine Translation (EBMT). An EBMT
system translates by analogy, using past translations to translate other, similar source-
language sentences into the target language. The basic premise is that, if a previously
translated sentence occurs again, the same translation is likely to be correct.
In this paper, we propose a solution based on a purely syntactic approach for searching
similar sentences and parts of them in an EBMT system; the underlying similarity mea-
sure is based on the similarity between sequence of terms such that the sentences most
close to a given one are those who maintain most of the original form and contents. The
system efficiently retrieves and ranks the most similar sentences available and, when no
useful suggestion exists, it proceeds with the retrieval of similar parts. We opted for a
design that would require minimal changes to existing databases and whose similarity
measure and search algorithms are completely independent from the involved languages.
This work has been developed as a joint work with LOGOS S.p.A., a worldwide leader
in multilingual document translation.

1 Introduction

Translation is a repetitive activity requiring a high degree of attention and the full range
of human knowledge. The attempt to automate such a difficult task has been a long-term
scientific dream of enormous social, political and scientific importance. Research in this field
has acquired a growing interest in the past years, and, thanks also to recent technological
advances, some degree of automatic translation (or Machine Translation - MT) is nowadays a
reality. Among the above cited translation types, one of the most promising paradigms is MAHT
and, in particular, example-Based Machine Translation (EBMT). Example-based translation is
essentially translation by analogy. An EBMT system is given a set of sentences in the source
language (from which one is translating) and their corresponding translations in the target
language, and uses those examples to translate other, similar source-language sentences into
the target language. The basic premise is that, if a previously translated sentence occurs again,
the same translation is likely to be correct. Although in many cases EBMTs do not provide a
translation by themselves, they suggest similar material thus helping to ensure the consistency
of style and terminology. Such suggestions should be as close as possible to the source sentences
so that editing the translation would take less time than generating a translation from scratch.

Usually, EBMT systems rely a DBMS. Corpora of bilingual text are maintained in a trans-
lation memory. More precisely, the translation memory is a database populated by previously
translated documents together with the corresponding translation. The sentences of the source
language document are first aligned with those of the target one, then the resulting pairs of
sentences are stored in the translation memory together with some additional useful informa-
tion. When the EBMT system is about to translate a document, it searches the translation



memory database for the document sentences, and presents the user with the translation(s) of
the same sentences or similar ones. The effectiveness of translation memories increases with the
amount of related translations it stores: As the user translates text, his/her translations become
available in the database and they are particularly effective when translating a new document
in the same field.

Due to the high complexity and extent of languages, in most cases it is rather difficult
that a translation memory stores the exact translation of a given sentence. Thus, an EBMT
system is proved to be a useful translator assistant only if most of the suggestions provided
are based on similarity searching rather than exact matching. In this paper, we propose a
solution based on a purely syntactic approach for searching similar sentences and parts of them
in an EBMT system. The underlying similarity measure is based on the similarity between
sequence of terms such that the sentences most close to a given one are those who maintain
most of the original form and contents. The system efficiently retrieves and ranks the most
similar sentences available in the translation memory and, when, no useful suggestion exists, it
proceeds with the retrieval of similar parts. As far as the design of the system is concerned, we
choose a solution that would require minimal changes to existing databases and whose similarity
measure and search algorithms are completely independent from the involved languages. We
show how sentence similarity search can be mapped into an SQL expression and optimized by
conventional optimizer. The immediate practical benefit of our techniques is that approximate
search in translation memory can be widely and efficiently deployed without changes to the
underlying database.

The rest of the paper is organized as follows: in Section 2 we discuss related work. Section 3
presents the approach adopted for searching similar sentences and parts of them in the transla-
tion memory. In Section 4 we discuss the results of the conducted experiments. Finally, Section
5 concludes the paper.

2 Related work

The example(s) an EBMT system determines to be equivalent (or at least similar enough) to
the text to be translated varies according to the approach taken by the system. The pioneer in
EBMT system is Nagao [6] who suggested to emulate human translation practice in recognizing
the similarity of a new source language sentence to a previously translated item by selecting
identical phrases available in the translation memory except for a similar content word. This
approach has been further developed by Brown [2] whose partial match is performed by allowing
equivalence classes. Additional investigations of EBMT report interesting results restricted to
subproblems such as function words [9], noun phrases [8], and propositional phrase attachment
[9].

The main drawback of the above approaches is threefold. First, they presume the availability
of a particular knowledge strictly related to the involved language, such as equivalence classes,
thus requiring the intervention of the translator who has to annotate his/her translations before
their insertion in the translation memory. Second, they never define a similarity measure thus
forbidding the ranking of the results. Indeed, as far as we know, only few researchers tried to
include the concept of approximate search in translation memories. Third, the entire sentence
is always the smallest unit of search. EBMT systems do not consider the sentence contents for
interesting parts.

Finally, commercial systems take an important role in the context of computer-aided trans-
lation. A popular set of commercial products includes Trados [11], Déjà Vu [3], and IBM’s
Translation Manager. They basically work in the same manner and show the drawbacks dis-
cussed above.



3 Searching Similar (Sub)Sentences in the Translation Memory

In this section, we propose a solution for searching similar sentences and parts of them in the
translation memory. Given a sentence to be translated and a similarity threshold, the proposed
techniques first search and rank the most similar sentences, that is those whose similarity with
the query exceeds the threshold (full matches). If no sentence exists, the search is extended by
comparing parts of the query with parts of the available sentences (sub matches). To efficiently
identify candidate answers we use filters ad-hoc ensuring no false dismissals and few false
positives. The proposed techniques are mapped into SQL expressions and can be widely and
efficiently deployed without changes to the underlying database.

The underlying similarity measure is described below. As far as we know, this is the first
attempt to formally introduce the concept of sentence similarity measure.

3.1 A (dis)similarity measure between sentences

The problem of defining a similarity measure between sentences is addressed by taking into
consideration the two following requirements:

– the similarity measure should be as much independent from the translation context, such
as involved languages and subjects, as possible. Naturally, the Translation Memory that
the system creates and uses has to be bound to a specific couple of languages, but we
can nonetheless be able to ensure the independence of the similarity search algorithms
underneath. In this way, we ensure applicability without additional semantic knowledge.
Indeed, either such additional knowledge is fully specified by translators, which would be
almost impractical, or it should be a generic knowledge such as that given by thesaurus or
ontology, which would often lead to “out of context” suggestions.

– the similarity measure should take into account the position of words in the sentence.
Consequently, two sentences are considered to be different if they share the same set of
words but in different positions. This requirement is based on the assumption that editing
the suggestion should take less time than generating a translation from scratch.

We define a sentence as a sequence of terms and we consider two sentences to be as much similar
as they maintain the same order of the same terms. For instance, the sentence “the dog eats
the cat” is more similar to “the dog eats the mouse” than “the cat eats the dog”.

The (dis)similarity between sentences has to be based on a distance function. Our notion of
similarity measure recalls the edit distance usually adopted to capture the concept of approx-
imate equality between strings [7]. In the following definition we adapt the classical definition
of edit distance to the sentence context.

Definition 1 (Edit Distance between sequence of terms). Let S1 and S2 be two sentences
represented by the following sequence of terms: σ(S1) = t11 . . . t1n and σ(S2) = t21 . . . t2m. The
edit distance ed between σ(S1) and σ(S2) (ed(σ(S1), σ(S2))) is the minimum number of edit
operations (i.e., insertions, deletions, and substitutions) of single terms needed to transform
the first sequence into the second.

Notice that if σ is just the identity function then two sentences which are equal except for
word inflexions have an edit distance greater than 0. In information retrieval, stemming is
a compressive technique widely used for removing grammatical suffixes and stopwords and
converting the set of the remaining words to a common root form [1]. We therefore consider
an alternative σ definition based on stemming operations. In the following I(S) will denote S
itself (I is the identity function) whereas φ(S) will denote the sequence of terms as outcome of
the application of stemming operations to S.



Example 1. Let us consider the following sentences: S1 = “the dog eats the cat” and S2 =“the
dogs eat the cats” where φ(S1) = φ(S2) = dog eat cat. Then ed(S1, S2) = 3 whereas a more
significative outcome is obtained by applying stemming: ed(φ(S1), φ(S2)) = 0.

In the following we introduce the definition of similarity match based on the distance function
of Def. 1. Similarity matches will be exploited for full matches and partial matches.

Definition 2 (Similarity Match). Given two sentences S1 and S2 and a distance thresh-
old d, the similarity match editDistance(σ(S1), σ(S2), d) returns the edit distance value if its
two sequence arguments are within edit distance of the integer argument d, a negative value
otherwise.

3.2 Searching for full matches

Translators usually submit one or more documents to the EBMT system. Such documents
contain a considerable number of sentences. Given a set of sentences to be translated and a
distance threshold d, we discuss an efficient technique for searching similar sentences in the
translation memory based on the distance function of Def. 1. As far as the distance threshold
d is implied notice that it should be specified as a natural number. In the context of EBMT
systems, searching for sentences within d errors, where d is independent of the length of the
query could be little meaningful. For example, searching for sentences within 3 errors given a
query of length 6 is deeply different from searching sentences within the same number of errors
given a query of length 20. For this reason we consider d as the percentage of admitted errors
with respect to the sentences to be translated.

Definition 3 (Full matches). Given the set of sentences Q to be translated, the set of sen-
tences TM in the translation memory, and a distance error d, for each Sq ∈ Q of length |Sq|
retrieve all sentences S ∈ TM (denoted as suggestions) such that

editDistance(σ(Sq), σ(S), round(d ∗ |σ(Sq)|)) ≥ 0

and rank them on the basis of the editDistance outcome.

In our mapping σ is the stemming function φ. Therefore, the SQL expression exploiting filtering
techniques for full matches, similar to the one proposed in [4], has the following form:

INSERT INTO FULLMATCH

SELECT R2.COD AS COD2, R1.COD AS COD1, R1.TARG SENT AS SUGGESTION,

edit distance(R1.STEM SENT,R2.STEM SENT,ROUND(d*R2.LEN)) AS DIST

FROM TM R1, Q R2

WHERE <filters>

AND edit distance(R1.STEM SENT,R2.STEM SENT,ROUND(d*R2.LEN))>=0

ORDER BY COD2, DIST, COD1

where TM is the translation memory and Q is an auxiliary table storing the sentences to be
translated which is created on-the-fly when we perform full/partial matches and deleted upon
completion; edit distance(,,) is a user-defined function (UDF) implementing the similarity
match editDistance(, , ). Schemata of TM and Q and the meaning of their attributes are shown
in the following table.

TM Q Attribute Meaning

X X COD key attribute
X X SOURCE SENT sentence in the source language
X X STEM SENT corresponding stemmed version
X X LEN length of the stemmed sentence
X TARG SENT translation in the target language
X APOS alignment information, used for partial matches (see Sub. 4.3)
X SPOS alignment information, used for partial matches (see Sub. 4.3)



INSERT INTO FULLMATCH
SELECT R2.COD AS COD2, R1.COD AS COD1, R1.TARG SENT AS SUGGESTION

edit distance(R1.STEM SENT,R2.STEM SENT,ROUND(d*R2.LEN)) AS DIST
FROM TM R1, TMq R1q, Q R2, Qq R2q
WHERE R1.COD = R1q.COD
AND R2.COD = R2q.COD
AND R1q.Qgram = R2q.Qgram

-- position filtering
AND ABS (R1q.POS - R2q.POS) <= ROUND(d * R2.LEN)

-- length filtering
AND ABS (R1.LEN - R2.LEN) <= ROUND(d * R2.LEN)
GROUP BY R2.COD, R1.COD, R1.STEM SENT, R2.STEM SENT, R1.LEN, R2.LEN

-- count filtering
HAVING COUNT(*)>= (R1.LEN - 1 - (ROUND(d * R2.LEN) - 1) * q)
AND COUNT(*) >= (R2.LEN - 1 - (ROUND(d * R2.LEN) - 1) * q)
AND edit distance(R1.STEM SENT,R2.STEM SENT,ROUND(d*R2.LEN))>=0
ORDER BY COD2, DIST, COD1

Fig. 1. Q1: Query for full matches with filters

Filters Filters are exploited for computing both full and partial matches. First, filters efficiently
select a set of candidate answers ensuring no false dismissals and containing few false positives.
Then, as a second step, we perform editDistance(, , ), an expensive and in-memory algorithm
which eliminates all false positives. Filters rely on matching short parts of length q, denoted
as q-grams, of the query sentences with those of the translation memory sentences. Below, we
briefly introduce the notion of positional q-gram for sentences as a variant of that given in the
literature for words [10]. Given a sentence S and its representation as sequence of terms σ(S),
its positional q-grams are obtained by “sliding” a window of length q over the terms of σ(S).
Since q-grams at the beginning and the end of the sentence can have fewer than q terms from
σ(S), we introduce new terms “#” and “$” not in the term grammar, and conceptually extend
the sequence σ(S) by prefixing it with q − 1 occurrences of “#” and suffixing it with q − 1
occurrences of “$”.

Definition 4 (Positional q-gram). A positional q-gram of a sentence S is a pair (i; [i . . . i +
q − 1]), where [i . . . i + q − 1] is the q-gram of σ(S) that starts at position i, counting on the
extended sentence. The set Gσ(S) of all positional q-grams of a sequence σ(S) is the set of all
the |σ(S)|+ q − 1 pairs constructed from all q-grams of σ(S).

In our approach, q-grams are computed for the stemmed sentences of the query and of the
translation memory and stored in two auxiliary tables Qq and TMq with the same schema
(COD,POS,Qgram). For each sentence S, its positional q-grams are represented as separate tu-
ples in the above tables, where POS identifies the position of the q-gram Qgram. The positional
q-grams of S share the same value for the attribute COD, which serves as the foreign key attribute
to the table storing S.

Taking advantage of some key properties of q-grams, we exploit three filtering techniques
which basically take into account the total number of q-gram matches and the position of
individual q-gram match.

Proposition 1 (Count Filtering). Consider sequences σ(S1) and σ(S2), of lengths |σ(S1)|
and |σ(S2)|, respectively. If σ(S1) and σ(S2) are within an edit distance of d, then the cardinality
of Gσ(S1)∩Gσ(S2), ignoring positional information, must be at least max(|σ(S1)|, |σ(S2)|)−1−
(d− 1) ∗ q.

Proposition 2 (Position Filtering). If sequences σ(S1) and σ(S2) are within an edit distance
of d, then a positional q-gram in one cannot correspond to a positional q-gram in the other that
differs from it by more than d positions.

Proposition 3 (Length Filtering). If sequences σ(S1) and σ(S2) are within an edit distance
of d, their lengths cannot differ by more than d.



Proves and explanations of the above filters can be found in [10].
The complete query Q1 for full matches presented in Figure 1 shows that filters can be

expressed as an SQL expression and efficiently implemented by a commercial relational query
engine. Consequently, when documents to be translated are submitted to our EBMT system,
it first searches full matches by mapping the problem to a conventional SQL expression. The
involved SQL expression joins the auxiliary tables for q-gram sentences, TMq and Qq, with the
query table Q and the translation memory TM to retrieve the sentence pairs with the corre-
sponding suggestions in the target language to be inserted in the FULLMATCH table. Matches are
first ordered on the basis of the query sentences then, for each query sentence, we rank similar
sentences on the basis of the value returned by the distance function. The position filtering
is implemented by pruning out all pair of sentences which share one q-gram, but the relative
positions differ substantially. The length filtering is mapped by comparing the length of the in-
volved sentences. Finally, the count filtering is implemented by comparing the number of q-gram
matches with the length of the involved sentences. Some examples showing the effectiveness of
full matches can be found in Subsec. 4.3.

3.3 Beyond full matches: searching for partial matches

Experience with several language pairs has shown that producing an EBMT system which
provides reasonable translation coverage of unrestricted texts requires a great number of pre-
translated text [2]. Consequently, translators may submit sentences for which no full match
exists. Anyway, the sentences stored in the translation memory could be partially useful. We
thus propose to search for matches between parts of query sentences and parts of the translation
memory sentences. Given a distance error and a minimum suggestion length, for the query
sentences for which no full match exists, we suggest those parts of the translation memory
sentences exceeding the minimum length that we consider to be useful for the translation. In
doing this, we avoid to present suggestions which are contained in other ones.

Definition 5 (Part suggestion). Let Q be the set of sentences to be translated, Sq ∈ Q, TM
be the set of sentences in the translation memory, S ∈ TM , subD be a distance threshold, and
minL the minimum length. Then, (σ(S)[ti, . . . , tj ], k, h) is an Sq part suggestion iff (j−i+1) ≥
minL and exists σ(Sq)[sk, . . . , sh] such that sk = ti and sh = tj and:

editDistance(σ(S)[ti, . . . , tj ], σ(Sq)[sk, . . . , sh], round(subD ∗ |σ(Sq)[sk, . . . , sh]|)) ≥ 0

Notice that σ(S)[ti, . . . , tj ] denotes the σ(S) subsequence of length j− i+1 starting at position
i. We denote with PSugTM

Sq
the set of all Sq part suggestions available in the translation

memory TM . Notice that PSugTM
Sq

can be partitioned on the basis of the starting point:
PSugTM

Sq
[K] = {(S[ti, . . . , tj ], k, h) ∈ PSugTM

Sq
| k = K}.

Definition 6 (Partial matches). Given the set of sentences Q to be translated, the set of
sentences TM in the translation memory, a distance threshold subD, and minimum length
minL, for each Sq ∈ Q

– compute PSugTM
Sq

;
– delete from PSugTM

Sq
all suggestions (σ(S)[ti, . . . , tj ], k, h) such that (σ(S)[tn, . . . , tm], k′, h′)

exists for which [k, h] ⊂ [k′, h′];
– partition PSugTM

Sq
into {PSugTM

Sq
[K] | K ∈ [1, |σ(Sq)| −minL]};

– rank PSugTM
Sq

[K] for K ∈ [1, |σ(Sq)| −minL]} on the basis of the distance outcome.

Example 2. Suppose that minL = 3 and subD = 0.3 and that we search for the partial matches
for the query sentence “So, welcome to the world of computer generated art” where “welcome
world compute generate art” is the outcome of the stemming function. The sentences stored in
the translation memory are shown in the following table:



Welcome     world     compute     generate     art

2518.

 3945.

 5673.

 10271.

 13456.

Fig. 2. An example of partial matches

COD SOURCE SENT STEM SENT

2518 So, welcome to the world of music. welcome world music
3945 We welcome our guests to the Madrid Art Expo! welcome guest Madrid art Expo
5673 Welcome to the world of computer aided translation! welcome world compute aid translation
10271 We welcome you to the world of computer generated welcome world compute generate fractal

fractals.
13456 This is a computer generated art work. be compute generate art work

All the above sentences present some common words with the query sentence. Figure 2 shows
all the candidate part suggestions identified as those parts of the stemmed sentences starting
and ending with the same term of some parts of the stemmed query shown on the top of the
figure. For instance, 3945[welcome, . . . ,art ] is a candidate part suggestion since the following
subsequence of the stemmed version of the sentence 3945 welcome guest Madrid art shares
the first and last words with welcome world compute generate art. The part of 2518 is not a
suggestion since it is too short, the part of 3945 is not a suggestion since

editDistance(3945[welcome, . . . , art], Q[welcome, . . . , art], round(0.3 ∗ |5|)) < 0

The remaining candidate suggestions are all “true” suggestions. From the computation of the
partial matches 5673[welcome, . . . ,compute] is deleted since it is contained in 10271[welcome,
. . . ,generate].

The above example shows that the computation of partial matches requires two steps: the
identification of all the candidate part suggestions followed by the proper computation of partial
matches. More formally, a candidate suggestion is a part [ti, . . . , tj ] of a stemmed sentence φ(S)
such that exists [sk, . . . , sh] in the stemmed query sentence φ(Sq) where ti = sk and tj = sh.
As for full matches, also for partial matches we provide a mapping into SQL expressions.

Identification of candidate part suggestions The computation of candidate part sug-
gestions is entrusted to the UDF FindMatchPos (query code,query,sent code,sent) which
given a stemmed query sentence, and a stemmed sentence in the translation memory, it first
lexicographically sorts the two sentences also maintaining the word original position informa-
tion; then it searches for equal words and stores their positions in a table, named MATCHPOS.
The schema of MATCHPOS is (QCOD,TMCOD,QPOS,TMPOS) where QCOD and TMCOD are the code
of the query sentence and translation memory sentence respectively, QPOS and TMPOS are the
positions of equal words in the query and in the sentence respectively. Notice that the com-
putational cost of FindMatchPos is O(n log n) corresponding to the sort computational cost.



SELECT R2.COD AS COD2, R1.COD AS COD1
FROM TM R1, Q R2, TMq1 R1SUBq, Qq1 R2SUBq
WHERE R1.COD = R1SUBq.COD
AND R2.COD = R2SUBq.COD
AND R1SUBq.Qgram = R2SUBq.Qgram
AND R2.COD NOT IN (SELECT COD2 FROM FULLMATCH)

-- count filtering
GROUP BY R2.COD, R1.COD, R1.STEM SENT, R2.STEM SENT
HAVING COUNT(*) >= minL - 1 - (ROUND(subD*minL)-1)*qsub - (qsub-1)*2
AND findMatchPos(R1.COD, R1.STEM SENT, R2.COD, R2.STEM SENT) >= 0

Fig. 3. Q2: identification of candidate part suggestions with filters

The set of candidate sentence pairs to which we apply the FindMatchPos function is obtained
by applying a cheap, approximate algorithm that prunes out all pair of sentences (Sq, S) such
that the sentence S surely does not contain a part suggestion of the query Sq. We achieve this
by performing the FindMatchPos function along with some additional filters (query Q2 in Fig.
3). From the three filtering techniques defined for full matches, length filtering and position
filtering are not applicable whereas count filtering is still applicable since the two sentences
must obviously have a certain minimum number of q-grams, in order to contain the one a part
suggestion for the other. Anyway, notice that the names of the auxiliary tables employed for
storing positional q-grams, i.e. R1SUBq and R2SUBq, are distinct from those employed for full
matches, i.e. R1q and R2q. Indeed, for partial matches q-grams are computed from stemmed
sentences not extended with “#” and “$”, since it is almost impractical to extend all the possi-
ble parts of all the sentences contained in the translation memory. Such a difference influences
both the the size qsub of qsub-grams and count filtering. As to the former, the correctness of
the filters based on qsub-grams is ensured if qsub is less or equal to the value specified in the
following Proposition.

Proposition 4. The propositional formula “If S contains an Sq part suggestion then exists at
least one qsub-gram shared by S and Sq” is true if and only if q sub ∈ [1, b minL

round(subD∗minL)+1c]
Intuitively, in order to establish the qsub limits we consider the minimum length of the part sug-
gestion, i.e. minL, and we distribute the round(subD∗minL) allowed errors. The worst case oc-
curs when we have round(subD∗minL)+1 “safe” parts with the same size: b minL

round(subD∗minL)+1c.
As to count filtering, the formula minL−1−(round(subD∗minL)−1)∗qsub−(qsub−1)∗2 is

obtained from the condition shown in Proposition 1 by substituting max(|σ(S1)|, |σ(S2)|) with
the minimum length minL and by subtracting to the total count the number of qsub-grams
with wild cards, i.e. (qsub− 1) ∗ 2. It corresponds to the minimum number of qsub-grams shared
by two sentences with a similar part whose length is at least minL.

Computation of partial matches Once the positions of equal words have been stored in
MATCHPOS, we proceed with the proper computation of partial matches. Such partial matches
should satisfy the following requirements: they should be at least minL long, they should be
similar to the query sentences, and, finally, they should not be contained in other suggestions.
To this end, we present a technique for computing partial matches efficiently. Efficiency is again
ensured by means of filters allowing the checking of the edit distance in a limited set of candidate
part suggestions. In this case, filters are based on the same properties stated for full matches
but take into account the relative positions of equal words. Let E[σ(Sq), σ(S)] = {(pSq , pS)} be
the set of positions of equal words stored in table MATCHPOS for the sentence pair (Sq, S), then
the exploited filtering techniques are described below.

Proposition 5 (Count Filtering for Sub Matching). Consider sequences σ(S1) and σ(S2)
and (pS1 , pS2) ∈ E[σ(S1), σ(S2)] and (qS1 , qS2) ∈ E[σ(S1), σ(S2)] such that pS1 ≤ qS1 and



INSERT INTO SUBMATCH
SELECT M1.QCOD AS QCOD, M1.QPOS AS QPOS1, M2.QPOS AS QMPOS2,

M1.TMCOD AS TMCOD, M1.TMPOS AS TMPOS1, M2.TMPOS AS TMPOS2,
edit distance(Pos2Seq(R1.STEM SENT, M1.TMPOS, M2.TMPOS),
Pos2Seq(R2.STEM SENT, M1.QPOS, M2.QPOS), ROUND(subD*R2.LEN)) AS DIST

FROM MATCHPOS M1, MATCHPOS M2, TM R1, Q R2
WHERE M1.TMCOD = M2.TMCOD AND M1.QCOD = M2.QCOD
AND M1.TMCOD = R1.COD AND M1.QCOD = R2.COD

-- extreme checking
AND M1.TMPOS < M2.TMPOS AND M1.QPOS < M2.QPOS

-- minimum length checking
AND (M2.QPOS - M1.QPOS + 1) >= minL AND (M2.TMPOS - M1.TMPOS + 1) >= minL

-- length filtering
AND . . .

-- position filtering
AND . . .

-- inclusion checking
AND NOT EXISTS

(SELECT M3.QPOS, M3.TMPOS, M4.QPOS, M4.TMPOS
FROM MATCHPOS M3, MATCHPOS M4, TM R3, Q R4
WHERE M3.TMCOD = M4.TMCOD AND M3.QCOD = M4.QCOD
AND M3.TMCOD = R3.COD AND M3.QCOD = R4.COD
AND M3.TMPOS < M4.TMPOS AND M3.QPOS < M4.QPOS
AND (M4.TMPOS - M3.TMPOS + 1) >= minL
-- length, count and position filtering
AND . . .
AND edit distance (Pos2Seq(R3.STEM SENT, M3.TMPOS, M4.TMPOS),
Pos2Seq(R4.STEM SENT, M3.QPOS, M4.QPOS), <subD>) >= 0
AND M3.QCOD = M1.QCOD
AND ((M1.QPOS = M3.QPOS AND M4.QPOS > M2.QPOS)
OR (M3.QPOS < M1.QPOS AND M2.QPOS = M4.QPOS)
OR (M3.QPOS < M1.QPOS AND M4.QPOS > M2.QPOS)
OR (M1.QPOS = M3.QPOS AND M2.QPOS = M4.QPOS AND M1.TMCOD = M3.TMCOD
AND ((M1.TMPOS = M3.TMPOS AND M4.TMPOS > M2.TMPOS)
OR (M3.TMPOS < M1.TMPOS AND M2.TMPOS = M4.TMPOS)
OR (M3.TMPOS < M1.TMPOS AND M4.TMPOS > M2.TMPOS) ))))

ORDER BY QCOD, QPOS1, DIST

Fig. 4. Q3: Query for partial matches with filters

pS2 ≤ qS2 . If σ(S1)[pS1 , . . . , qS1 ] and σ(S2)[pS2 , . . . , qS2 ] are within an edit distance of d, then
the number of common words, ignoring positional information, must be at least

max(|σ(S1)[pS1 , . . . , qS1 ]|, |σ(S2)[pS2 , . . . , qS2 ]|)− d

where d is the number of allowed errors.

Proposition 6 (Position Filtering for Sub Matching). If the sequences σ(S1)[pS1 , . . . , qS1 ]
and σ(S2)[pS2 , . . . , qS2 ] are within an edit distance of d, then a word in one cannot correspond
to a word in the other that differs from it by more than d positions.

Proposition 7 (Length Filtering for Sub Matching). If the sequences σ(S1)[pS1 , . . . , qS1 ]
and σ(S2)[pS2 , . . . , qS2 ] are within an edit distance of d, their lengths cannot differ by more than
d.

The mapping of the filtering techniques into SQL is shown in Figure 4 where UDF Pos2Seq(,,)
returns the part of the given sentence starting and ending at the given extremes. Due to the
lack of space, we do not show the complete mapping of the supported filters which is similar
to the one proposed for full matches (see Fig. 1). Notice that the inclusion checking verifies
the non-existence of a subsequence which passes the filters and satisfies the condition on the
distance function and which contains the subsequence considered.

4 Experimental Evaluation

In this section we present the results of an experimental evaluation of the techniques described
in the previous sections.



4.1 Data Sets

To effectively test the system, we used two real data sets:

– Collection1, taken from two versions of a software technical manual. It consists of 1497
reference sentences and 419 query sentences.

– Collection2, a complete Translation Memory provided by LOGOS, containing translations
from one of their customers’ technical manuals. There are 34550 reference sentences, com-
plete with translation, and 421 query sentences.

Collection1 only contains English sentences and it was mainly used to test the system
effectiveness in finding useful suggestions in a relatively small translation memory. Collection2,
on the other hand, contains both English sentences and their Italian translations; because
of its greater size, we were able to use it not only to test the system behaviour with well
established and more repetitive data, but also to test the system efficiency. Further, being the
sentences available in two languages, the system has also been tested in aligning them and
giving suggestions in the target language.

4.2 Implementation

The similarity search techniques described in previous sections have been implemented using
Java2 and JDBC code; the underlying DBMS is Oracle 8i Enterprise Edition running on a Dell
OptiPlex GX1 Microsoft NT workstation. We developed three options for the similarity search
process:

1. Search for full matches: We issued query Q1 to the DBMS.
2. Search for partial matches - accurate: We issued queries Q2 and Q3. The size of qsub-grams

used in query Q2 is 1 and the minimum length minL is 3.
3. Search for partial matches - fast : We consider a variant of the above search option by using

the same q-gram size for full and partial matches. The adopted value corresponds to the size
q used for full matches and exceeds the limit stated in Proposition 4. In this way, the same
auxiliary tables for q-grams, TMq and Qq, are exploited both for full and partial matches.
Since filtering technique in query Q2 is no longer correct, we expected the exclusion of useful
suggestions for partial matches. In this case, we were interested in quantifying the tradeoff
between the number of excluded suggestions and the time gained in the execution.

Queries have been implemented using standard SQL code and Java Stored Procedures.
In particular, the edit distance function has been implemented as the optimized “diagonal
transition algorithms” described by Ukkonen [12]: the computation of only certain elements
of the dynamic programming matrix allows the improvement of the worst case computational
complexity which is O(d2) for checking whether the distance is ≤ d or not. The computation
and storage of q-grams of the translation memory sentences in the corresponding auxiliary
tables were performed after their insertion in the translation memory. We therefore preferred
the above solution to the option of creating auxiliary tables on-the-fly, as suggested in [4].
Indeed, in our case, the creation on the fly would have required four/five minutes, which could
not be considered a negligible time during query processing.

As for query efficiency, by issuing conventional SQL expressions we have been able to rely
on the DBMS standard optimization algorithms; we just added some appropriate indexes on
the q-gram tables to further speed up the filtering and search processes.
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Fig. 5. Coverage of the collections as outcome of the similarity search process

4.3 Performance

The system performance was tested both with respect to the effectiveness and the efficiency
of the proposed search techniques. As far as efficiency is concerned, we observed performance
trends under the parameters that are associated with our problem (i.e. q-gram size, number of
allowed errors expressed in term of the percentage of admitted errors with respect to the query
sentence). Finally, we used two performance metrics corresponding to the running time of the
algorithms and the size of the candidate set. Unless explicitly specified, all experiments have
been conducted by setting the value of q to 3 and d to 0.2.

Effectiveness To test standard Information Retrieval systems effectiveness it is necessary to
evaluate how precise is the answer set to a user query: this is often achieved by calculating
recall and precision figures over a well known test collection. Since there are no such collections
to test a machine translation and sentence similarity system, we were able to evaluate more
practically other test figures, focused on our particular problem. One of the fundamental aspects
related to the effectiveness of the proposed techniques is the coverage of the query sentences,
that is the percentage of query sentences for which at least one suggestion, obtained both from
a full or a partial match, has been found in the translation memory. Figure 5 shows that our
search techniques ensure a good coverage for the considered collections. In particular, the good
consolidation of Collection 2 implies a very high level of coverage (over 99%), where most of
the suggestions concerns full matches, whereas for the remaining query sentences the coverage
is independent from the implementation of fast or accurate search. As to Collection 1 which is
relatively small, notice that partial matches cover a percentage of query sentences (about 60%)
which is five times that covered by full matches (about 12%). Moreover, from the comparison
between accurate and fast search it follows that fast search prunes out about 18% more sentences
than accurate search.

Figure 6 shows some examples of suggestions retrieved in Collection 2 by applying full
and partial matches. The emphasized parts denote interesting parts for suggestions. Notice
that, while full sentence suggestions in the target language can be directly selected from the
translation memory, part suggestions must be extracted from the sentence in the target language
containing some similar parts. To this end, once the submatches in the source language have been
found out, the corresponding parts in the target language, which are the proper suggestions,
are determined by means of some word alignment techniques. Due to the lack of space, we do
not discuss those techniques. More details can be found in [5].



Query sentence: Position the 4 clips (D) as shown and at the specified dimensions.
Similar sentence in the source language: Position the 4 clips (A) as shown and at the specified
distance.
Corresponding sentence in the target language: Posizionare le 4 mollette (A) come indicato e
alla distanza prevista.
Query sentence: On completion of electrical connections, fit the cooktop in place from the top and
secure it by means of the clips as shown.
Sentence containing a similar part: After the electrical connection, fit the hob from the top and
hook it to the support springs, according to the illustration.
Corresponding sentence in the target language: Dopo aver eseguito il collegamento elettrico,
montare il piano cottura dall’ alto e agganciarlo alle molle di supporto come da figura.
Suggestion in the target language: collegamento elettrico, montare il piano cottura dall’alto
Sentence containing a similar part: Secure it by means of the clips.
Suggestion in the target language: Fissare definitivamente per mezzo dei ganci.

Fig. 6. Examples of full and partial matches
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Fig. 7. Running time tests

Efficiency We examined first the running time of the three similarity search processes. As
to Collection2, figure 7 shows that the running time required to cover 401 query sentences
by means of full matches over 34550 reference sentences is 78 seconds. The execution time
difference between the accurate and the fast version of partial search, i.e. 349 over 562 seconds,
makes the fast solution much more feasible also considering the equally high coverage (see
Fig. 5). Our experiments on Collection 1 show that a relatively small and little consolidated
translation memory hits the performance of the system. Anyway, notice that, thanks to filtering
techniques, the system takes 8 seconds to compare the 419 query sentences against the 1497
reference sentences for full matches. As to partial matches, also in this case the fast solution is
7.5 times faster than the accurate solution but it shows a smaller coverage.

The scalability test performed on Collection2 are synthetized in Fig. 8. Query Q1 shows a
sub-linear behaviour, queries Q2 and Q3 have a linear behaviour. The average time for sentence
processing is from 2 sec. over 25% of the total amount of query sentences up to 1.5 sec. over
the total amount.



78
57

33

165

104

43

397

235

128

0

50

100

150

200

250

300

350

400

450

25% 50% 100%

Query Sentences

Seconds
Q1
Q2
Q3

Fig. 8. Scalability tests on Collection2

78

258

89

139

192

0 50 100 150 200 250 300

Seconds

Test1: Filters ON 

Test1: Filters OFF

Test2: Filters ON Indexes ON

Test2: Filters OFF Indexes ON

Test2: Filters ON Indexes OFF

Fig. 9. Filtering test

Effect of filters and indexes We also examine how effective each filter, each index and each
combination of filters and indexes is by running different queries, enabling different filters and
indexes each time, and measuring the running time and the size of the candidate set. Due to
the lack of space, we only show the experiments running time for full matches. We conduct
two experiments: test1 on Collection2 and test2 on an extended version of Collection2 with
61420 reference sentences (two times that of Collection2) and 50 query sentences. Figure 9
shows that enabling all filters reduces the response time from 258 to 78 seconds for Collection2.
The presence of indexes further improves the system performance as shown by test2 where we
compare the response time with indexes enabled and disabled.

Finally, subfigure 10(b) proves that q = 3, adopted in our experiments, is the best assignment
for q. As far as d is implied, we only performed tests with d less or equal to 0.3 (see subfig.
10(a)) since greater values would have led to almost useless suggestions. Indeed, translators
usually set the value of d from 0.2 to 0.1.
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5 Conclusions

In this paper we presented an approach for searching similar sentences and parts of them in
a translation memory. The experiments we conducted show the effectiveness of the underlying
similarity measure and the efficiency of the SQL mapping together with filtering techniques.
Full and partial search have been implemented in an environment, named EXTRA (EXample
based TRanslation Assistant) [5], where innovative techniques were also exploited for phrase
and word alignment. As a final remark, we are interested in improving the proposed techniques,
in particular partial search, and we will go further on this direction in the future.
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