
Unordered XML Pattern Matching with Tree Signatures
(Extended Abstract) ?

Pavel Zezula1, Federica Mandreoli2, and Riccardo Martoglia2

1 Masaryk University, Brno, Czech Republic
zezula@fi.muni.cz

2 University of Modena and Reggio Emilia, Modena, Italy
{mandreoli.federica, martoglia.riccardo }@unimo.it

Abstract. We propose an efficient approach for finding relevant XML data twigs defined
by unordered query tree specifications. We use the tree signatures as the index structure
and find qualifying patterns through integration of structurally consistent query path qual-
ifications. An efficient technique is proposed and its implementation tested on real-life
data collections.

1 Introduction

With the rapidly increasing popularity of XML for data representation, there is a lot of interest
in query processing over data that conform to thelabelled-treedata model. The idea behind
evaluating tree pattern queries, sometimes called thetwig queries, is to find all existing ways
of embedding the pattern in the data. Since XML data collections can be very large, efficient
evaluation techniques for tree pattern matching are needed.

From the formal point of view, XML data objects can be seen as ordered labelled trees.
Following this model, previous approaches considered also the query trees ordered, so the
problem can be characterized as theordered tree pattern matching. Though there are certainly
situations where the ordered tree pattern matching perfectly reflects the information needs
of users, there are many other that would prefer to consider query trees as unordered. For
example, when searching for a twig of the elementperson with the subelementsfirst
name andlast name (possibly with specific values), ordered matching would not consider
the case where the order of thefirst name and thelast name is reversed. However,
this could exactly be the person we are searching for. The way to solve this problem is to
consider the query twig as an unordered tree where only theancestor-descendantrelationships
are important – thepreceding-followingrelationships are unimportant.

In general, the process of unordered tree matching is difficult and time consuming. For
example, theedit distanceon unordered trees was found in [ZSS92]NP hard. To improve
efficiency, an approximate searching for nearest neighbors, called ATreeGrep, was proposed in
[SWS+02]. However, the problem of unordered twig pattern matching in XML data collections
has not been studied, to the best of our knowledge.

In this paper we propose an efficient evaluation of the unordered tree matching. We use
the tree signature approach [ZAD03], which has originally been proposed for the ordered tree
matching. In principle, we decompose the query into a collection of root to leaf paths and
search for their embedding in the data trees. Then we join thestructurally consistentpath
qualifications to find unordered query tree inclusions in the data.

? An extended version of this paper has been presented as invited talk at the SOFSEM 2004 Conference
[ZMM04]

The rest of the paper is organized as follows. In Section 2, we summarize the concepts of
tree signatures and define their properties that are relevant towards our objectives. In Section
3, we analyze the problem of unordered tree matching and of the efficient computation of the
query answer set. Performance evaluations are presented in Section 4. Final conclusions are in
Section 5.

2 A Brief Introduction to Tree Signatures

The idea oftree signaturesproposed in [ZAD03] is to maintain a small but sufficient repre-
sentation of the tree structures able to decide the ordered tree inclusion problem for the XML
data processing. As a coding schema, thepreorderandpostorderranks [Die82] are used. In
this way, ordered labelled trees are linearized, and extended string processing algorithms are
applied to identify the tree inclusion. We recall that an ordered treeT is a rooted tree in which
the children of each nodev ∈ T are uniquely identified, left to right, asi1, i2, . . . , ik (k is the
number of children) and thatT is a labelled tree if it associates a label (name)tv ∈ Σ (the do-
main of tree node labels) with each nodev ∈ T . For illustration, see the preorder and postorder
sequences of our sample ordered labelled tree in Fig. 1 – the node’s position in the sequence is
its preorder/postorder rank, respectively. For instancepre(a) = 1 andpost(a) = 10.

a
↙ ↘

b f
↓ ↘ ↘
c g h

↙ ↘ ↙ ↘
d e o p

pre : a b c d e g f h o p
post : d e c g b o p h f a
rank : 1 2 3 4 5 6 7 8 9 10

Fig. 1. Preorder and postorder sequences of a tree

Definition 1. Let T be an ordered labelled tree. The signature ofT is a sequence,sig(T) =
〈t1, post(t1); t2, post(t2); . . . tn, post(tn)〉, of n = |T | entries, whereti is a name of the node
with pre(ti) = i (i is the position of the entry in the sequence).

For example,〈a, 10; b, 5; c, 3; d, 1; e, 2; g, 4; f, 9; h, 8; o, 6; p, 7〉 is the signature of the tree from
Fig. 1.

By extending entries of tree signatures with two preorder numbers representing pointers
to thefirst following, ff , and thefirst ancestor, fa, nodes, theextended signaturesare also
defined in [ZAD03]. The generic entry of thei-th extended signature is〈ti, post(ti), ff i, fai〉.
Such version of the tree signatures makes possible to compute levels for any node as the level
of each nodelevel(ti) = ff i−post(ti)−1, because the cardinality of the descendant node set
can be computed as:size(ti) = ff i− i−1. For the tree from Fig. 1, the extended signature is:
sig(T) = 〈a, 10, 11, 0; b, 5, 7, 1; c, 3, 6, 2; d, 1, 5, 3; e, 2, 6, 3; g, 4, 7, 2; f, 9, 11, 1; h, 8, 11, 7;
o, 6, 10, 8; p, 7, 11, 8〉.

A sub-signaturesub sigS(T) is a specialized (restricted) view ofT through signatures,
which retains the original hierarchical relationships of elements inT . Specifically,sub sigS(T)
= 〈ts1 , post(ts1); ts2 , post(ts2); . . . tsn , post(tsn)〉 is a sub-sequence ofsig(T), defined by the

ordered setS = {s1, s2, . . . sk} of indexes (preorder values) insig(T), such that1 ≤ s1 <
s2 < . . . < sk ≤ n.

Finally, the serialization of the tree based on pre- and post-orders adopted for the tree
signature allows the introduction of a direct and simple approach for the evaluation of the
ordered tree inclusionof a query twigQ in a dataD. We recall thatQ is included inD, if D
contains all nodes ofQ and when thesibling andancestorrelationships of the nodes inD are
the same as inQ. As show in [ZAD03], using the two signaturessig(Q) andsig(D), we can
state thatD is included in an ordered fashion inD if sig(Q) is sequence included at the level
of node names insig(D) and if such an inclusion satisfies some constrains on the pre- and
post-order values of the involved nodes.

3 Unordered Tree Pattern Matching

In this section, we propose an approach to the unordered tree pattern matching by using tree
signatures. The following definition specifies the notion of unordered tree inclusion.

Definition 2 (Unordered Tree Inclusion).Given a query twig pattern Q and an XML tree D,
an unordered tree inclusion of Q in D is identified by a total mapping from nodes in Q to some
nodes in D, such that only the ancestor-descendent structural relationships between nodes in
Q are satisfied by the corresponding nodes in D.

Q D

a a
↙ ↘ ↙ ↘

f ↘ a f
b ↙ ↘

b c

Fig. 2. Sample of unordered tree inclusion

Example 1.Consider the queryQ and the data treeD of Fig. 2 where the double arrow repre-
sents an ancestor-descendant edge. Then the only unordered inclusion ofQ in D is identified
by the following total mapping{1 7→ 1, 2 7→ 5, 3 7→ 3} where nodes are univocally identified
by their pre-order value and ancestor-descendent structural relationships are satisfied (e.g. in
Q 1 is the parent of 2 and inD 1 is the parent of 5).

Since signatures assume (data and query) trees always ordered, the serialization of trees
based on the preorder and postorder ranks does not only capture the ancestor-descendent but
also the sibling relationships. For this reason, unlike ordered tree inclusion evaluation, the
unordered tree inclusion can not be evaluated by directly using extended string processing
algorithms.

Lemma 1. Suppose the data treeD and the query treeQ to be specified by signaturessig(D) =
〈d1, post(d1); d2, post(d2); . . . dm, post(dm)〉, sig(Q) = 〈q1, post(q1); q2, post(q2); . . . qn,
post(qn)〉. The unordered query treeQ is included in the data treeD if the following two condi-
tions are satisfied: (1) on the level of node names, an ordered set of indexesS = {s1, s2, . . . sn}
exists,1 ≤ si ≤ n for i = 1, . . . , n, such thatdsi = qi, (2) for all pairs of entriesi and j,
i, j = 1, 2, . . . |Q|−1 andi+j ≤ |Q|, if post(qi+j) < post(qi) thenpost(dsi+j) < post(dsi).

For instance consider the signatures of queryQ and the signature of the data treeD of Fig. 2:
sig(Q) = 〈a, 3; f, 1; b, 2〉 sig(D) = 〈a, 5; a, 3; b, 1; c, 2; f, 4〉. The only sub-signature qual-
ifying the unordered tree inclusion ofQ in D is defined by the index set{1, 5, 3} and the
corresponding sub-signature issub sig{1,3,5}(D) = 〈a, 5; b, 1; f, 4〉.

The solution we propose basically employs tree signatures to represent data trees. Then we
decompose the query tree into a set of root-to-leaf paths and, by exploiting string processing
algorithms, we evaluate the ordered inclusion of such multiple queries. Finally, if there are
structurally consistent answers to the ordered inclusion of all the paths, the unordered tree
inclusion of the query in the data tree is found.

In the following, due to the lack of space, we give a brief overview of each of the three steps
which our approach is composed of. Details about the adopted algorithms and their properties
can be found in [ZMM04].

3.1 Query decomposition

The query decomposition process transforms a query twigQ into a set of root-to-leaf paths
so that the ordered tree inclusion can be safely applied. For efficiency reasons, we sort the
paths on the basis of their selectivity, so that in the next phase, the more selective paths
are evaluated before the less selective ones. By acting on the extended signaturesig(Q) =
〈t1, post(t1), ff1, fa1; . . . ; tn, post(tn), ffn, fan〉 of Q, the output of the query decomposi-
tion process is the ordered setrew(Q) of the sub-signaturessub sigPj (Q) defined by the index
setsPj , for each leafj of Q. For instance for the query twig of Ex. 1,rew(Q) = {P2, P3}
whereP2 = {1, 2} andP3 = {1, 3}.

3.2 Path inclusion evaluation

Any pathPj represents all (and only) the ancestor-descendent relationships between the in-
volved nodes and the ordered evaluation coincides with the unordered one. Thus, an ordered
inclusion ofsig(Pj) in sig(D) states that a mapping, keeping the ancestor-descendent rela-
tionships, exists from the nodes inPi to some nodes inD. It can be performed by means of an
extended string processing algorithm as shown by the following Lemma.

Lemma 2. A pathP ∈ rew(Q) is included in the data treeD, in the sense of Definition
2, if the following two conditions are satisfied: (1) on the level of node names,sub sigP (Q)
is sequence-included insig(D) determiningsub sigS(D) through the ordered set of indexes
S = {s1, . . . , sh}, (2) for eachi ∈ [1, n− 1]: post(dsi) < post(dsi+1).

For each path queryP ∈ rew(Q), we are thus able to efficiently compute the answer set
ansP (D) = {S | sub sigS(D) qualifies the inclusion ofP in D}. For instance,ansP2(D)
andansP3(D) of Ex. 1 is shown in the first two Tables of Fig. 3.

3.3 Identification of the answer set

The answer setansQ(D) of the unordered inclusion ofQ in D can be determined by joining
compatible answer setsansP (D), for all P ∈ rew(Q). The main problem is to establish how
to join the answers for the paths inrew(Q) to get the answers of the unordered inclusion of
Q in D. Not all pairs of answers of two distinct sets are necessarily “joinable”. The condition
is that any pair of pathsPi andPj share a common sub-path (at least the root) and differ in
the other nodes (at least the leaves). Suchcommonalitiesanddifferencesmust meet a corre-
spondence in any pair of index setsSi ∈ ansPi(D) andSj ∈ ansPj (D), respectively, in

ansP2(D):
P2 1 2

1 5
ansP3(D):

P3 1 3
1 3
2 3

sj(ansP2 , ansP3):
P2 ∪P3 1 2 3

1 5 3

Fig. 3. Structural join of Ex.1

order that they are joinable. In this case, we state thatSi ∈ ansPi(D) andSj ∈ ansPj (D)
are structurally consistent as specified by the definition. For instance{1, 5} ∈ ansP2(D) and
{2, 3} ∈ ansP3(D) are not structurally consistent as the common node with pre-order value1
in Q does not find a correspondence in the two index sets (i.e.1 6= 2 as shown in the data tree
D in Fig. 2, as they correspond to the two nodes with the same labela).

Definition 3 (Structural consistency).LetQ be a query twig,D a data tree,Ti = {t1i , . . . , tni }
andTj = {t1j , . . . , tmj } two ordered sets of indexes determiningsub sigTi

(Q) andsub sigTj
(Q),

respectively,ansTi
(D) andansTj

(D) the answers of the unordered inclusion ofTi andTj in
D, respectively.Si = {s1

i , . . . , s
n
i } ∈ ansTi

(D) and Sj = {s1
j , . . . , s

m
j } ∈ ansTj

(D) are
structurally consistent if:

– for each pair of common indexesthi = tkj , sh
i = sk

j ;
– for each pair of different indexesthi 6= tkj , sh

i 6= sk
j .

Given two structurally consistent answersSi ∈ ansTi(D) andSj ∈ ansTj (D), where
Ti = {t1i , . . . , tni }, Tj = {t1j , . . . , tmj }, Si = {s1

i , . . . , s
n
i } andSj = {s1

j , . . . , s
m
j }, the join

of Si andSj , Si ./ Sj , is defined on the ordered setTi ∪ Tj = {t1, . . . , tk} as the index set
{s1, . . . , sk} where:

– for eachh = 1, . . . , n, l ∈ {1, . . . , k} exists such thatthi = tl andsh
i = sl;

– for eachh = 1, . . . , m, l ∈ {1, . . . , k} exists such thatthj = tl andsh
j = sl.

The answer setansQ(D) can thus be computed by sequentially joining the sets of answers of
the evaluation of the path queries. We denote such operation as thestructural join.

Definition 4 (Structural join). Let Q be a query twig,D a data tree,Ti andTj two ordered
sets of indexes determiningsub sigTi(Q) andsub sigTj (Q), respectively.

The structural joinsj(ansTi(D), ansTj (D)) between the two setsansTi(D) andansTj (D)
is the setansT (D) whereT = {t1, . . . , tk} is the ordered set obtained by the unionTi ∪ Tj of
the ordered setsTi andTj andansT (D) contains the joinSi ./ Sj of each pair of structurally
consistent answers(Si ∈ ansTi(D), Sj ∈ ansTj (D)).

The structural joinsj(ansTi(D), ansTj (D)) thus returns an answer set defined on the union
of two sub-queriesTi andTj as the join of the structurally consistent answers ofansTi(D)
andansTj (D). Starting from the set of answers{ansPx1

(D), . . . , ansPxk
(D)} for paths in

rew(Q), we get the answer setansQ(D) identifying the unordered inclusion ofQ in D by
incrementally merging the answer sets by means of the structural join. Since the structural join
operator is associative and symmetric, we can computeansQ(D) as:

ansQ(D) = sj(ansPx1
(D), . . . , ansPxk

(D)) (1)

whererew(Q) = {Px1 , . . . , Pxk
}.

Example 2.The answer setansQ(D) of Example 1 is the outcome of the structural join
sj(ansP2(D), ansP3(D)) = ansP2∪P3(D) whereP2 ∪ P3 = {1, 2} ∪ {1, 3} is the ordered
set{1, 2, 3}. The answers to the individual paths and the final answers are shown in Fig. 3 (the
first line of each table shows the query). It joins the only pair of structurally consistent answers:
{1, 5} ∈ ansP2(D) and{1, 3} ∈ ansP3(D).

3.4 Efficient computation of the answer set

Till now, we have studied how tree signatures can be employed to support unordered tree
pattern matching. However, XML data trees can have many nodes and the tree signatures,
linearly proportional to the number of nodes, can be very large, so the performance aspects
of such operation becomes a matter of concern. In the previous sections, we have specified
two distinct phases for unordered tree pattern matching: the computation of the answer set for
each root-to-leaf path of the query and the structural join of such sets. The main drawback of
this approach is that many intermediate results may not be part of any final answer. As shown
in [ZMM04], these two phases can be merged into one phase in order to avoid unnecessary
computations.

In the following, we will give some hints of the adopted algorithm. The basic idea is to
evaluate at each step the most selective path among the available ones and to directly com-
bine the partial results computed up to that moment with structurally consistent answers of the
paths. More precisely, assuming thatpQ is the ordered index set determining the sub-signature
sub sigpQ(Q) evaluated up to that moment, the algorithm incrementally joins the partial an-
swer setanspQ(D) with the answer setansP (D) of the next pathP of rew(Q). As each pair
of index sets must be structurally consistent in order to be joinable, we compute only such an-
swers inansP (Q), which are structurally consistent with some of the answers inanspQ(D).
As a matter of fact, only such answers may be part of the answers toQ. In order to do it, the
algorithm exploits the additional information contained in the extended signaturesig(Q) and
tries to extend each answer inanspQ(D) to the answers topQ ∪ P by only evaluating such
sub-path ofP which has not been evaluated inpQ.

In summary, the proposed solution performs a small number of additional operations on
the paths of the query twigQ, but dramatically reduces the number of operations on the data
trees by avoiding the computation of useless path answers. In this way, we remarkably reduce
computing efforts. Indeed, while query twigs are usually very small and have a limited number
of paths, XML data trees can have many nodes and tree signatures can be very large.

4 Performance evaluation

In this section we evaluate the performance of our unordered tree inclusion technique. We
measure the time needed to process different query twigs using the paths decomposition ap-
proach, described in this paper, and compare the obtained results with the query processing
performance of the permutation approach.

Since synthetic data sets are not significant enough to show the performance of real-life
XML query scenarios, we performed our experiments on a real data set, specifically the com-
plete DBLP Computer Science Bibliography archive as of November 2003. Notice that the file
consists of over 3.8 Millions of elements, where over 3.4 Millions of them have an associated
value. The size of the XML file is 156MB. All algorithms are implemented in Java JDK 1.4.2
and the experiments are executed on a Pentium 4 2.5Ghz Windows XP Professional worksta-
tion, equipped with 512MB RAM and a RAID0 cluster of 2 80GB EIDE disks with NT file
system (NTFS).

We tested the performance of our approach for queries derived from six query twig tem-
plates (see Fig. 4). Such templates present differentelement name selectivity, i.e. the number of
elements having a given element name, differentbranching factors, i.e. the maximum number
of sibling elements, and differenttree heights. We refer to the templates as “xSb-h’, whereS
stands for element name selectivity and can be H(igh) or L(ow),b is the branching factor, andh
the tree height. We usedinproceedings for the low selectivity andbook andphdthesis

author

book

author
 title

Twig xH2-2

book

author
 title

Twig xH3-2

year

author

Twig xH7-3

dblp

book
phdthesis

title
 year

school
 author

publisher

isbn

url

Twig xL8-2

inproceedings

author

title

year
pages
 crossref
booktitle

ee

author
 title

Twig xL3-2

year

inproceedings
inproceedings

title

Twig xL2-2

Fig. 4. The query twigs templates used in the performance tests

for the high selectivity. We conducted experiments by using not only queries defined by the
plain templates (designated as “NSb-h”), which only contain tree structural relationships, but
also queries (designated as “VSb-h”), where the templates are extended by predicates on the
author name. Value accesses are supported by a content index. We chose the highly content-
selective predicates, because we believe that this kind of queries is especially significant for
highly selective fields, such as the author name. On the other hand, the performance of queries
with low selectivity fields should be very close to the corresponding templates. In this way, we
measured the response time of twelve queries, half of which contain predicates.

Query Evaluation
Twig # elements# predicates# solutionsDecomposition Permutation

(sec) N mean (sec) total (sec)
NH2-2 3 0 1343 0.016 2 0.014 0.028
NH3-2 4 0 1343 0.016 6 0.015 0.105
NH7-3 10 0 90720 1.1 288 0.9 259.2
NL2-2 3 0 559209 2.2 2 2.28 4.56
NL3-2 4 0 559209 4.2 6 2.49 14.94
NL8-2 9 0 149700 7.7 40320 4.8 193536
VH2-2 3 1 1 0.015 2 0.014 0.028
VH3-2 4 1 1 0.016 6 0.016 0.096
VH7-3 10 2 1 0.031 288 0.03 8.64
VL2-2 3 1 39 0.65 2 0.832 1.664
VL3-2 4 1 36 0.69 6 1.1 6.6
VL8-2 9 1 29 0.718 40320 2.3 92736

Table 1.Performance comparison between the two unordered tree inclusion alternatives

Table 1 summarizes the results of the unordered tree inclusion performance tests for both
the approaches we considered. For each query twig, the total number of elements and pred-
icates, the number of solutions (inclusions) found in the data set, and the processing time,
expressed in seconds, are reported. For the permutation approach, the number of needed per-

mutations and the mean per-permutation processing time are also presented. It is evident that
the decomposition approach is superior and scores a lower time in every respect. In particular,
with low branching factors (i.e. 2), such approach is twice as faster for both selectivity settings.
With high branching factors (i.e. 3, 8) the speed increment becomes larger and larger – the num-
ber of permutations required in the alternative approach grows factorially: for queriesNL8-2
andVL8-2 the decomposition method is more than 25000 times faster. The decomposition ap-
proach is particularly fast with the high selectivity queries. Even for greater heights (i.e. in
VH7-3), the processing time stays in order of milliseconds. For the decomposition method, as
we do not have statistics on the path selectivity at our disposal, we measured the time needed
to solve each query for each of the possible order of path evaluation and reported only the
lower one. As we expected, we found that starting with the most highly selective paths always
increases the query evaluation efficiency. Of course, for the predicate queries the best time is
obtained by starting the evaluation from the value-enabled paths.

Finally, notice that the permutation approach also requires an initial “startup” phase where
all the different permutation twigs are generated; the time used to generate such permutations
is not taken into account.

5 Conclusions

In this paper, we presented a summary of the study on the problem of efficient evaluation of
unordered query trees in XML tree structured data collections we presented more deeply in
[ZMM04]. As the underlying concept, we have used the tree signatures, which have proved to
be a useful structure for an efficient tree navigation and ordered tree matching, see [ZAD03].
We have identified two evaluation strategies, where the first strategy is based on multiple eval-
uation of all query tree structure permutations and the second on decomposing a query tree
into a collection of all root-to leaf paths.

We have studied the decomposition approach and established rules for decomposition as
well as strategies for integration of partial, structurally consistent, results through structural
joins. The permutation and decomposition approaches to the unordered tree matching have
been tested on the DBLP data set for various types of queries. The experiments demonstrate
a clear superiority of the decomposition approach, which is especially advantageous for the
large query trees, and for trees with highly selective predicates.

References

[Die82] P.F. Dietz. Maintaining Order in a Linked List, InProceedings of STOC, 14th Annual ACM
Symposium on Theory of Computing, May 1982, San Francisco, CA, 1982, pp. 122-127.

[Gr02] T. Grust. Accelerating XPath location steps. InProceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, Madison, Wisconsin, 2002, pp. 109-120.

[SWS+02] D. Shasha, J.T.L. Wang, H. Shan, and K. Zhang. ATreeGrep: Approximate Searching in Un-
ordered Trees. Proceedings of the14th International Conference on Scientific and Statistical
Database Management, July 24-26, 2002, Edinburgh, Scotland, UK, pp. 89-98.

[ZAD03] P. Zezula, G. Amato, F. Debole, and F. Rabitti. Tree Signatures for XML Querying and Navi-
gation. InProceedings of the XML Database Symposium, XSym 2003, Berlin, September 2003,
LNCS 2824, Springer, pp. 149-163.

[ZSS92] K. Zhang, R. Statman, and D. Shasha. On the edit distance between unordered labeled trees.
Information Processing Letters, 42:133-139, 1992.

[ZMM04] P. Zezula, F. Mandreoli, and R. Martoglia. Tree Signatures and Unordered XML Pattern
Matching (invited talk). InProceedings of 30th Conference on Current Trends in Theory and
Practice of Computer Science, SOFSEM 2004, Merin, January 2004.

