Università degli studi di Modena e Reggio Emilia

Dipartimento di Scienze Fisiche, Informatiche e Matematiche Corso di Laurea in Informatica

Progetto e sviluppo in Swift di un'applicazione per dispositivi mobili basata su dati semantico-lessicali

RELATORE:

Ing. Riccardo Martoglia

LAUREANDA:

Diana Sighinolfi

A.A. 2014-2015

- ► Apprendere e conoscere il linguaggio Swift
- ► Gestire ed elaborare dati provenienti da un database semantico-lessicale
 - ► Realizzare un'applicazione iOS in Swift

- ► Apprendere e conoscere il linguaggio Swift
- ► Gestire ed elaborare dati provenienti da un database semantico-lessicale
 - ► Realizzare un'applicazione iOS in Swift

- ► Apprendere e conoscere il linguaggio Swift
- ► Gestire ed elaborare dati provenienti da un database semantico-lessicale
 - ► Realizzare un'applicazione iOS in Swift

- ► Apprendere e conoscere il linguaggio Swift
- ► Gestire ed elaborare dati provenienti da un database semantico-lessicale
 - ► Realizzare un'applicazione iOS in Swift

- ► Studio del linguaggio e delle tecnologie utilizzate in Swift
- ► Studio del database semantico MultiWordNet
- ► Software per l'elaborazione dei dati estrapolati da MultiWordNet
 - ► Game app in Swift

- ► Studio del linguaggio e delle tecnologie utilizzate in Swift
- ► Studio del database semantico MultiWordNet
- Software per l'elaborazione dei dati estrapolati da MultiWordNet
 - ► Game app in Swift

- ▶ Studio del linguaggio e delle tecnologie utilizzate in Swift
- Studio del database semantico MultiWordNet
- Software per l'elaborazione dei dati estrapolati da MultiWordNet
 - ► Game app in Swift

- ▶ Studio del linguaggio e delle tecnologie utilizzate in Swift
- ► Studio del database semantico MultiWordNet
- ► Software per l'elaborazione dei dati estrapolati da MultiWordNet
 - ► Game app in Swift

- ▶ Studio del linguaggio e delle tecnologie utilizzate in Swift
- ► Studio del database semantico MultiWordNet
- ► Software per l'elaborazione dei dati estrapolati da MultiWordNet
 - ► Game app in Swift

Swift è un linguaggio fresco, leggero e facile da apprendere, soprattutto per i neofiti. Basato sul C e sull'Objective-C, è tuttavia considerato quasi un linguaggio di *scripting* per la sua estrema flessibilità.

- ▶ tipizzazione forte
- valori opzionali
- ▶ no fallthrough implicito
- ► Automatic Reference Counting

Swift è un linguaggio fresco, leggero e facile da apprendere, soprattutto per i neofiti. Basato sul C e sull'Objective-C, è tuttavia considerato quasi un linguaggio di *scripting* per la sua estrema flessibilità.

- ▶ tipizzazione forte
- valori opzionali
- ▶ no fallthrough implicito
- ► Automatic Reference Counting

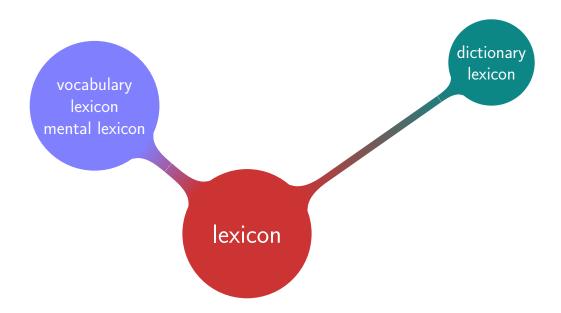
Swift è un linguaggio fresco, leggero e facile da apprendere, soprattutto per i neofiti. Basato sul C e sull'Objective-C, è tuttavia considerato quasi un linguaggio di *scripting* per la sua estrema flessibilità.

- ▶ tipizzazione forte
- valori opzionali
- ▶ no fallthrough implicito
- ► Automatic Reference Counting

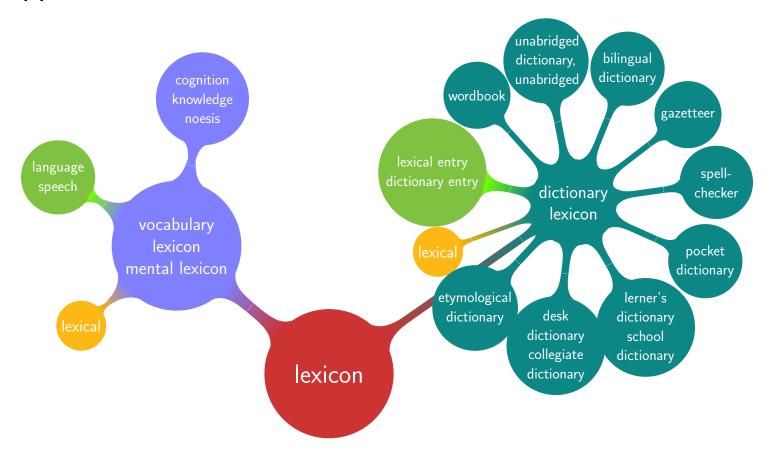
Swift è un linguaggio fresco, leggero e facile da apprendere, soprattutto per i neofiti. Basato sul C e sull'Objective-C, è tuttavia considerato quasi un linguaggio di *scripting* per la sua estrema flessibilità.

- ▶ tipizzazione forte
- valori opzionali
- ▶ no fallthrough implicito
- ► Automatic Reference Counting

Swift è un linguaggio fresco, leggero e facile da apprendere, soprattutto per i neofiti. Basato sul C e sull'Objective-C, è tuttavia considerato quasi un linguaggio di *scripting* per la sua estrema flessibilità.


- ▶ tipizzazione forte
- valori opzionali
- ▶ no *fallthrough* implicito
- ► Automatic Reference Counting

WordNet è un database semantico, strutturato a forma di grafo, sviluppato nell'università di Princeton.


WordNet è un database semantico, strutturato a forma di grafo, sviluppato nell'università di Princeton.

WordNet è un database semantico, strutturato a forma di grafo, sviluppato nell'università di Princeton.

WordNet è un database semantico, strutturato a forma di grafo, sviluppato nell'università di Princeton.

Il database lessicale è un *thesaurus* organizzato sulla base di *concetti* strutturati all'interno di insiemi:

- ▶ lemma
- ▶ sense
- synset

I synset sono collegati fra loro attraverso relazioni semantiche; le possibili relazioni previste dal dizionario sono:

- iponimia
- ipernimia
- meronimia

- ▶ implicazione
- similarità
- attributo

Il database lessicale è un *thesaurus* organizzato sulla base di *concetti* strutturati all'interno di insiemi:

- ▶ lemma
- ▶ sense
- synset

I synset sono collegati fra loro attraverso relazioni semantiche; le possibili relazioni previste dal dizionario sono:

- iponimia
- ipernimia
- meronimia

- ▶ implicazione
- similarità
- attributo

Il database lessicale è un *thesaurus* organizzato sulla base di *concetti* strutturati all'interno di insiemi:

- ▶ lemma
- sense
- synset

I synset sono collegati fra loro attraverso relazioni semantiche; le possibili relazioni previste dal dizionario sono:

- iponimia
- ipernimia
- meronimia

- ▶ implicazione
- similarità
- attributo

Il database lessicale è un *thesaurus* organizzato sulla base di *concetti* strutturati all'interno di insiemi:

- ▶ lemma
- sense
- synset

I synset sono collegati fra loro attraverso relazioni semantiche; le possibili relazioni previste dal dizionario sono:

- iponimia
- ipernimia
- meronimia

- ▶ implicazione
- similarità
- attributo

Il database lessicale è un *thesaurus* organizzato sulla base di *concetti* strutturati all'interno di insiemi:

- ▶ lemma
- sense
- synset

I synset sono collegati fra loro attraverso relazioni semantiche; le possibili relazioni previste dal dizionario sono:

- ▶ iponimia
- ▶ ipernimia
- meronimia

- ► implicazione
- ▶ similarità
- ► attributo

Il database lessicale è un *thesaurus* organizzato sulla base di *concetti* strutturati all'interno di insiemi:

- lemma
- sense
- synset

I synset sono collegati fra loro attraverso relazioni semantiche; le possibili relazioni previste dal dizionario sono:

- iponimia
- ▶ ipernimia
- meronimia

- ▶ implicazione
- ▶ similarità
- attributo

MultiWordNet è un database lessicale multilingue che nella versione online è realizzato in tre lingue:

- ► Inglese (WordNet dell'università di Princeton)
- ► Spagnolo (Università politecnica di Catalogna, Barcellona)
- ▶ Italiano (ITC-irst di Povo, Trento)

MultiWordNet è un database lessicale multilingue che nella versione online è realizzato in tre lingue:

- ► Inglese (WordNet dell'università di Princeton)
- ► Spagnolo (Università politecnica di Catalogna, Barcellona)
- ▶ Italiano (ITC-irst di Povo, Trento)

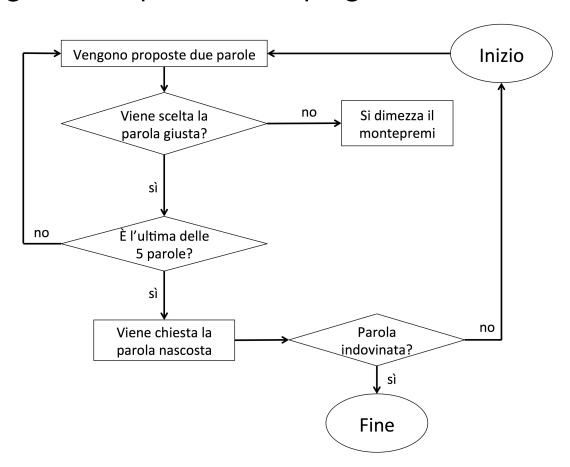
MultiWordNet è un database lessicale multilingue che nella versione online è realizzato in tre lingue:

- ► Inglese (WordNet dell'università di Princeton)
- ► Spagnolo (Università politecnica di Catalogna, Barcellona)
- ▶ Italiano (ITC-irst di Povo, Trento)

MultiWordNet è un database lessicale multilingue che nella versione online è realizzato in tre lingue:

- ▶ Inglese (WordNet dell'università di Princeton)
- Spagnolo (Università politecnica di Catalogna, Barcellona)
- ▶ Italiano (ITC-irst di Povo, Trento)

MultiWordNet è un database lessicale multilingue che nella versione online è realizzato in tre lingue:


- ▶ Inglese (WordNet dell'università di Princeton)
- ► Spagnolo (Università politecnica di Catalogna, Barcellona)
- ▶ Italiano (ITC-irst di Povo, Trento)

Il gioco

Il software sviluppato è una game application che ripropone il gioco de "La Ghigliottina" presente nel programma televisivo L'eredità.

Il gioco

Il software sviluppato è una game application che ripropone il gioco de "La Ghigliottina" presente nel programma televisivo L'eredità.

Schemi di gioco

Obiettivo proposto

Generare in maniera automatica gli elementi necessari per la creazione degli schemi di gioco.

- parola nascosta
- ▶ 5 parole-indizio
- ▶ 5 parole-intruso

Schemi di gioco

Obiettivo proposto

Generare in maniera automatica gli elementi necessari per la creazione degli schemi di gioco.

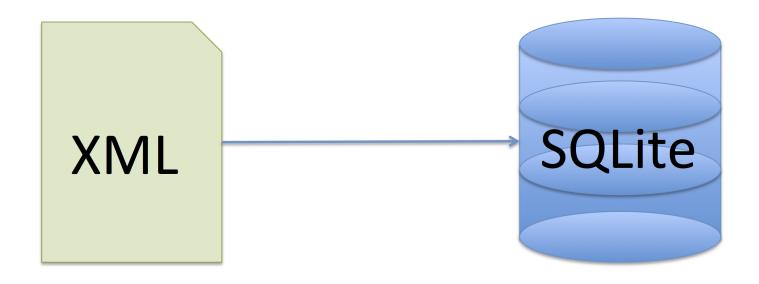
- parola nascosta
- ▶ 5 parole-indizio
- ▶ 5 parole-intruso

Schemi di gioco

Obiettivo proposto

Generare in maniera automatica gli elementi necessari per la creazione degli schemi di gioco.

- parola nascosta
- ▶ 5 parole-indizio
- ▶ 5 parole-intruso

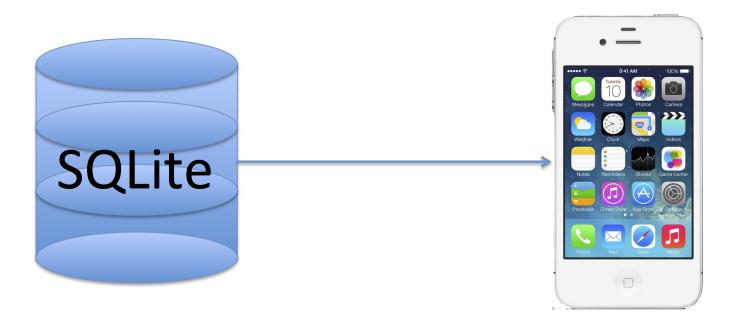

Schemi di gioco

Obiettivo proposto

Generare in maniera automatica gli elementi necessari per la creazione degli schemi di gioco.

- parola nascosta
- ▶ 5 parole-indizio
- ▶ 5 parole-intruso

Elaborazione dei dati


I dati messi a disposizione da MultiWordNet sono distribuiti in formato XML (\approx 1 milione di voci). Per il loro utilizzo si è deciso di elaborarli attraverso un software realizzato *ad hoc* in PHP che permette la conversione dei dati XML in un database relazionale SQLite.

Elaborazione dei dati

Il software utilizza un parser XML per estrapolare i dati dal database e genera il codice SQL necessario per la creazione e il popolamento della base di dati destinata all'applicativo.

Elaborazione dei dati

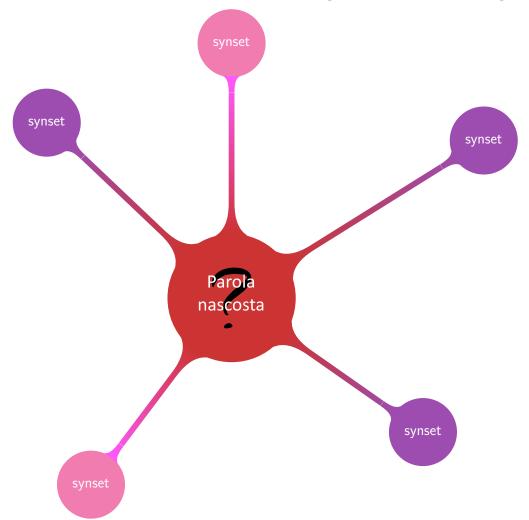
Il software utilizza un parser XML per estrapolare i dati dal database e genera il codice SQL necessario per la creazione e il popolamento della base di dati destinata all'applicativo.

Per interfacciare il database SQLite con l'applicazione si è utilizzato un wrapper in Swift.

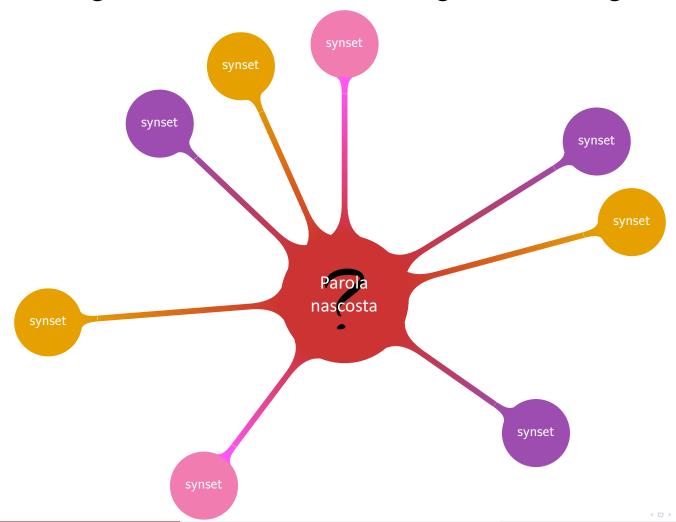
Algoritmo di generazione schemi

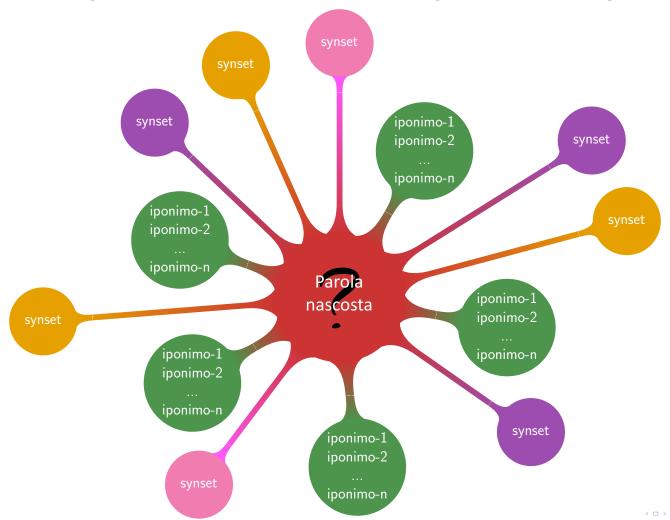
Algoritmo di generazione automatica degli schemi di gioco:

Algoritmo di generazione schemi

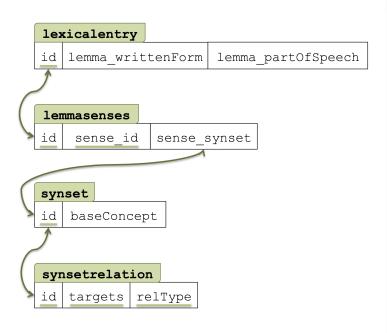


Algoritmo di generazione schemi

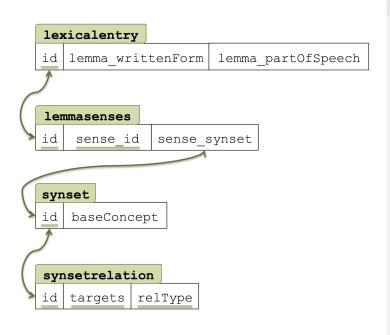

Algoritmo di generazione automatica degli schemi di gioco:


Algoritmo di generazione schemi

Algoritmo di generazione schemi



Algoritmo di generazione schemi


Algoritmo di generazione schemi

L'implementazione dell'algoritmo precedentemente descritto è stata realizzata principalmente in linguaggio SQL dopo la trasformazione del grafo in tabelle relazionali secondo il seguente schema:

Algoritmo di generazione schemi

L'implementazione dell'algoritmo precedentemente descritto è stata realizzata principalmente in linguaggio SQL dopo la trasformazione del grafo in tabelle relazionali secondo il seguente schema:


```
Recupero parola nascosta
let db = SQLiteDB.sharedInstance()
var array_tuple: [(writtenForm:String,
                   synset: String,
                   targets:String)] = []
let parole = db.query( "select lex.lemma_writtenForm,
       lem.sense_synset,
       s1.targets
       from lexicalentry lex,
       lemmasenses lem,
       synsetrelation s1
       where s1.reltype='hypo'
       and s1.id = lem.sense_synset
       and lex.id = lem.id
       and lex.lemma writtenForm <> 'GAP!'
       and lex.lemma_writtenForm <> 'PSEUDOGAP!'
       and s1.id <> s1.targets and 6<= (
       select count (distinct s2.targets)
      from synsetrelation s2
      where s1.id=s2.id
      and s2.reltype='hypo')")
for i in 0...parole.count-1{
    let riga_parola = parole[i].data
    let tupla = (
    writtenForm:riga_parola["lemma_writtenForm"]!.asString(),
    synset:riga_parola["sense_synset"]!.asString(),
    targets:riga_parola["targets"]!.asString())
    array_tuple.append(tupla)
var i = Int(arc4random_uniform(UInt32(array_tuple.count))+1)
var parola_nascosta = array_tuple[i].writtenForm
```

Interfaccia grafica

- ► Parole tra cui scegliere in alto a sinistra
- ► Montepremi aggiornato in alto a destra
- ► Lista delle *parole-indizio* al centro colorate in base alla selezione
- ► Campo di testo per scrivere la propria soluzione in basso
- ► Pulsante "Parola nascosta" per verificare la soluzione

Interfaccia grafica

- ► Parole tra cui scegliere in alto a sinistra
- ► Montepremi aggiornato in alto a destra
- ► Lista delle *parole-indizio* al centro colorate in base alla selezione
- ► Campo di testo per scrivere la propria soluzione in basso
- ► Pulsante "Parola nascosta" per verificare la soluzione

Interfaccia grafica

- ► Parole tra cui scegliere in alto a sinistra
- ► Montepremi aggiornato in alto a destra
- ► Lista delle *parole-indizio* al centro colorate in base alla selezione
- ► Campo di testo per scrivere la propria soluzione in basso
- ► Pulsante "Parola nascosta" per verificare la soluzione

Interfaccia grafica

- ► Parole tra cui scegliere in alto a sinistra
- ► Montepremi aggiornato in alto a destra
- ► Lista delle *parole-indizio* al centro colorate in base alla selezione
- ► Campo di testo per scrivere la propria soluzione in basso
- ► Pulsante "Parola nascosta" per verificare la soluzione

Interfaccia grafica

- ► Parole tra cui scegliere in alto a sinistra
- ► Montepremi aggiornato in alto a destra
- ► Lista delle *parole-indizio* al centro colorate in base alla selezione
- ► Campo di testo per scrivere la propria soluzione in basso
- ► Pulsante "Parola nascosta" per verificare la soluzione

Interfaccia grafica

- ► Parole tra cui scegliere in alto a sinistra
- ► Montepremi aggiornato in alto a destra
- ► Lista delle *parole-indizio* al centro colorate in base alla selezione
- ► Campo di testo per scrivere la propria soluzione in basso
- ► Pulsante "Parola nascosta" per verificare la soluzione

Interfaccia grafica

- ► Parole tra cui scegliere in alto a sinistra
- ► Montepremi aggiornato in alto a destra
- ► Lista delle *parole-indizio* al centro colorate in base alla selezione
- ► Campo di testo per scrivere la propria soluzione in basso
- ► Pulsante "Parola nascosta" per verificare la soluzione

Interfaccia grafica

- ► Parole tra cui scegliere in alto a sinistra
- ► Montepremi aggiornato in alto a destra
- ► Lista delle *parole-indizio* al centro colorate in base alla selezione
- ► Campo di testo per scrivere la propria soluzione in basso
- ► Pulsante "Parola nascosta" per verificare la soluzione

Interfaccia grafica

- ► Parole tra cui scegliere in alto a sinistra
- ► Montepremi aggiornato in alto a destra
- ► Lista delle *parole-indizio* al centro colorate in base alla selezione
- ► Campo di testo per scrivere la propria soluzione in basso
- ► Pulsante "Parola nascosta" per verificare la soluzione

Interfaccia grafica

- ► Parole tra cui scegliere in alto a sinistra
- ► Montepremi aggiornato in alto a destra
- ► Lista delle *parole-indizio* al centro colorate in base alla selezione
- ► Campo di testo per scrivere la propria soluzione in basso
- ► Pulsante "Parola nascosta" per verificare la soluzione

Interfaccia grafica

- ► Parole tra cui scegliere in alto a sinistra
- ► Montepremi aggiornato in alto a destra
- ► Lista delle *parole-indizio* al centro colorate in base alla selezione
- ► Campo di testo per scrivere la propria soluzione in basso
- ► Pulsante "Parola nascosta" per verificare la soluzione

Interfaccia grafica

- ► Parole tra cui scegliere in alto a sinistra
- ► Montepremi aggiornato in alto a destra
- ► Lista delle *parole-indizio* al centro colorate in base alla selezione
- ► Campo di testo per scrivere la propria soluzione in basso
- ► Pulsante "Parola nascosta" per verificare la soluzione

Interfaccia grafica

- ► Parole tra cui scegliere in alto a sinistra
- ► Montepremi aggiornato in alto a destra
- ► Lista delle *parole-indizio* al centro colorate in base alla selezione
- ► Campo di testo per scrivere la propria soluzione in basso
- ► Pulsante "Parola nascosta" per verificare la soluzione

In conclusione sono stati realizzati i seguenti software:

- ► Software per la conversione dei dati dal formato XML a quello SQL
- ► Game application in Swift con calcolo automatico degli schemi di gioco

Sviluppi futuri:

- migliorare l'efficienza dei tempi di risposta del sistema
- rendere l'interfaccia grafica più user friendly
- introduzione dei punti esperienza
- sfide con amici

In conclusione sono stati realizzati i seguenti software:

- ► Software per la conversione dei dati dal formato XML a quello SQL
- ► Game application in Swift con calcolo automatico degli schemi di gioco

Sviluppi futuri:

- migliorare l'efficienza dei tempi di risposta del sistema
- rendere l'interfaccia grafica più user friendly
- introduzione dei punti esperienza
- sfide con amici

In conclusione sono stati realizzati i seguenti software:

- ► Software per la conversione dei dati dal formato XML a quello SQL
- ► Game application in Swift con calcolo automatico degli schemi di gioco

Sviluppi futuri:

- migliorare l'efficienza dei tempi di risposta del sistema
- rendere l'interfaccia grafica più user friendly
- introduzione dei punti esperienza
- sfide con amici

In conclusione sono stati realizzati i seguenti software:

- ► Software per la conversione dei dati dal formato XML a quello SQL
- ► Game application in Swift con calcolo automatico degli schemi di gioco

Sviluppi futuri:

- ▶ migliorare l'efficienza dei tempi di risposta del sistema
- ▶ rendere l'interfaccia grafica più *user friendly*
- ▶ introduzione dei punti esperienza
- ▶ sfide con amici

In conclusione sono stati realizzati i seguenti software:

- ► Software per la conversione dei dati dal formato XML a quello SQL
- ► Game application in Swift con calcolo automatico degli schemi di gioco

Sviluppi futuri:

- ▶ migliorare l'*efficienza* dei tempi di risposta del sistema
- rendere l'interfaccia grafica più user friendly
- ▶ introduzione dei punti esperienza
- ▶ sfide con amici

In conclusione sono stati realizzati i seguenti software:

- ► Software per la conversione dei dati dal formato XML a quello SQL
- ► Game application in Swift con calcolo automatico degli schemi di gioco

Sviluppi futuri:

- ▶ migliorare l'*efficienza* dei tempi di risposta del sistema
- ▶ rendere l'interfaccia grafica più *user friendly*
- ▶ introduzione dei punti esperienza
- ▶ sfide con amici

In conclusione sono stati realizzati i seguenti software:

- ► Software per la conversione dei dati dal formato XML a quello SQL
- ► Game application in Swift con calcolo automatico degli schemi di gioco

Sviluppi futuri:

- ▶ migliorare l'*efficienza* dei tempi di risposta del sistema
- ▶ rendere l'interfaccia grafica più *user friendly*
- ▶ introduzione dei punti esperienza
- sfide con amici

In conclusione sono stati realizzati i seguenti software:

- ► Software per la conversione dei dati dal formato XML a quello SQL
- ► Game application in Swift con calcolo automatico degli schemi di gioco

Sviluppi futuri:

- ▶ migliorare l'*efficienza* dei tempi di risposta del sistema
- ▶ rendere l'interfaccia grafica più *user friendly*
- ▶ introduzione dei punti esperienza
- ▶ sfide con amici

Grazie per l'attenzione

