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Introduction

When Alan Turing firstly thought about his famous Turing test [1], his purpose

was to emulate a human-specific skill with a machine’s ability. The spectrum of

the capabilities was wide, but he decided to challenge a linguistic task.

He designed what is now the famous Imitation Game: a machine capable of

cheating the human it’s facing, thinking its responses come from a human too.

However, it was a primitive way to process the natural language and it had

its weaknesses. In the following years until nowadays, technologies that concern

the natural language treatment made big steps in the progress direction and the

huge amount of data increasingly pushed researchers to develop new strategies

to process them in a more efficient and less time-consuming way.

This thesis is about applying some of these techniques to provide a solution

to a recurring problem in the customer service system. With the great availabil-

ity of the Internet today, the amount of interconnected people is continuously

increasing and so is the time spent on e-commerce and other websites. The

more people interact with these kinds of services, the more pressing is to supply

appropriate answers to their requests.

Automation through AI represents a more complex solution in the short term

but, at the same time, a great saving of energy and time in the long run.

Part I - State of the art

In the first chapter I’m going to discuss more extensively about what is the

scope of this project. It’s presented a description of how customer service support

works today and why specifically AI represents the answer, listing the advantages

of such a solution.

Chapter 2 explains what is intended when talking about Natural Language

Processing (often shortened with the acronym NLP). Having to deal with natural

1



2 Introduzione

language coming from different sources and people it seemed fair to reserve a

special chapter about it.

Chapter 3 is about distinguishing the difference between Artificial Intelli-

gence, Machine Learning, and Deep Learning. It presents some of the core

concepts that will be talked about in the rest of this document to have a better

understanding of what is the work behind the solutions I proposed. It will men-

tion some of the algorithms that leveled up the state-of-the-art in this branch of

study too.

The subsequent chapter is about the nature of the data I had to deal with.

It shows the main performed transformations that it was subjected to, based on

the task to accomplish.

To close up the first part of the thesis, chapter 5 lists all the exploited tech-

nologies: from the programming language to the containerization tool. An in-

teresting view is given to the whole ecosystem in which the developed service

has been placed, to understand the interaction between each main component.

Part II - Text Classification Techniques

This part is focused on the realization of the delivered issue. It follows a

logical path beginning with the first of the two realized algorithms. The chapter

illustrates the development phases and a pair of tools that helped me through

the experience and were suddenly used with the second algorithm.

The second chapter is the most important since it explains the main algo-

rithm. The steps that led me to the solution were many and the possible solutions

themself were diversified over different approaches. Each step and enhancement

is described here.

A special focus on the future developments is reserved in the second-last

chapter: since the explained work it’s just a beginning to an improvable solution

there are some possible enhancement routes to undertake.

The last chapter closes the discussion proving thoughts about if the solution

reached or not the prefixed objective and summarizes what has been the winning

strategy.
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Chapter 1

Problem introduction

The delivery in which I was involved has been commissioned by a business user

in the fashion industry. Thus, the project developed with this thesis responds

to a real need present in various companies.

The organization of a help desk ticketing service for support and assis-

tance within a company is essential in order to provide an efficient and quality

service to users or to its customers.

As the business begins to grow, it’s clear that just one level of support is not

enough to guarantee optimal service. This is why lots of companies are moving

towards multi-tier support systems. The reason for using such a system, instead

of a single generic support group, is to provide the best possible service in the

most efficient way.

Thanks to escalation, maximum efficiency of the management process are

obtained. Groups of solvers are organized, and, if possible, the involvement of the

most pertinent solvers to user requests is automated through routing algorithms.

Escalation makes it possible to better comply with any SLAs (Service Level

Agreement) defined on the service or possibly specific to the customer.

The way escalation is managed depends on the ticketing software. Still, the

more the applications allow to automate this functionality, the more flexible and

efficient the systems will be, helping companies grow by optimizing resources.

The ticketing software is considered a bug tracking platform. One tangible

example is Jira. This allows the business user and a client to communicate and,

at the same time, maintain agile project management.

When a business user opens a ticket on the platform, people try to assign

5



6 1. Problem introduction

a project or a team to the presented issue. Most of the time, managers of

CED areas are not sure who can deal with the presented ticket. Examples of

problems could be the user database, the raw material supplier, or a management

software’s functionality.

Practically, each business user has its own AM Team (Assistance and Main-

tenance of the applications Team). Normally, there is a person in charge of

coordinating the distribution of customers’ requests to people.

Each labeled class corresponds to a working area. One of the available teams

will be in charge of solving the related open issues. Based on the workload, the

team could be formed to take care of an application or functionality.

There is not a single correct number of how many levels the ticketing software

should manage. It depends on the management objectives and on how the

functionalities can meet the needs of different companies in terms of configuration

and flexibility.

The AM team of the business user the solution was suit for is divided into

two different levels:

• 1st level

people who solve problems that do not require access to the code base.

Usually, it’s about the frontend interface or a how-to explanation to the

customer. In general, people deal with simple requests such as problems in

using the software. If the anomaly is known and a workaround or solution

exists, the solver can instruct the user on how to resolve the problem.

• 2nd level

people are in charge of fixing problems in the code base. The technicians

responsible for this level initially determine whether the problem is new

or whether the report refers to an already known and not yet resolved

problem.

If the bug takes more than five working days to be resolved, it’s called a

change request and requires a more detailed development. If it’s needed,

it could be passed to a specialised team.

The objective of the project is to match the right class of problems for an

opened ticket. The base from which to start the solution has been a collection of

closed tickets, each one labeled with what was supposed to be the correct class.
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In this context, AI represents the answer to the addressed problem.

The developed deep learning algorithm has a set of classes from which to

choose and, after a period of training, will be able to classify each new ticket to

the corrected class. An interesting option is the chance to change the predicted

classification by the user. The algorithm will provide what it thinks is the

most suitable class, but the user has to decide. They can revise the prediction

and retrain the model to improve the learning process.

Thanks to the developed models, the AI addresses this time-consuming pro-

cess, and that person could work on something more productive than just label

the incoming issues. This process is present at both levels, and the developed

AI models can get rid of both these assignments.

Some business users rely on Google or other external providers to benefit

from some services. Because of this, the user is constrained to be stuck to what

the provider has to offer. What if the business user is not satisfied with what its

provider has to offer?

With an on-premise solution instead, the business user

• is not forced to use the software that its provider offers (often at a higher

price) due to a signed contract

• could customize it in every aspect, even the algorithm.

1.1 Improvements

This kind of solution leads to two main improvements:

1. Speed of execution

Once the ticket has arrived to the business user platform, it is handled

instantly without waiting for a physical person to be available to do that

job.

2. FTE reduction

The Full-Time Equivalent is a method to evaluate the workload of em-

ployed people in a way that makes them comparable across different situ-

ations. It’s a numeric value between 0 and 1. An FTE of 1.0 represents a
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full-time worker, while a value of just 0.5 signifies half of the full work. It

could be used to improve the cost reduction in a production process too.

The time dedicated to this specific activity sometimes could be crucial in

order to respect deadlines and project deliveries. Hence, it is fundamental

to optimize the time where it’s possible.

1.2 Text anonymization

Before proceeding with the text classification procedure, it was possible to

anonymize the input data using a specific deep learning model to clean the

text from any useless sentence, especially greetings and thanks.

The anonymization had been possible just because of the project’s scope:

to determine to which class the text belongs, it’s not necessary to refer to the

actual rules of the GDPR. Some real examples of personal data are names,

surnames, and phone numbers.

A feasibility study a priori highlighted this important aspect. Respecting this

UE privacy regulation using this kind of information means that there should be

at least one legal basis to process a person’s data, unless they are aware of the

treatment. Therefore, writing a GDPR document was unnecessary because this

type of data is not present and thus not treated.



Chapter 2

Natural Language Processing

Natural Language Processing (NLP) is the field that studies the human natural

language in computer science and linguistics. In computer science it concerns

the process of teaching a machine how to interpret large amounts of natural

language data. There are plenty of remarkable applications and researches in

this discipline.

Nowadays is one of the most captivating fields of study since businesses run

over massive quantities of unstructured, text-heavy data and need a way to

efficiently process them. The data we are generating in the last years is largely

consistent with text and there’s no way humans can process it on their own in a

non time-consuming activity. And that’s why NLP is so important. In addition,

Machine Learning and especially Deep Learning algorithms can now efficiently

interpret even vague types of elements that were previously bad at.

2.1 Preprocessing phases

Often these data have to be processed a priori before feeding any algorithm with

them. It’s now presented a list of the most common operations applied to let an

algorithm perform better.

• Lexical Analysis

This includes the action of converting characters’ sequences in a token

stream. There are some symbols that could be complex to treat. It’s the

case of numbers, capital letters, dashed-words (-) and dots (.) Based on

9



10 2. Natural Language Processing

the context these sequences should have a different meaning (e.g. not every

time a dot means it’s going to start a new sentence, like in dates dicitures).

• Stopwords detection and deletion

The most repetitive words have not any discriminant power in distinguish-

ing a specific text so it’s a wise decision to detect and delete them to save

useful space since the dataset occupies a lot of disk memory. This leads

even to a little speed up in the text processing performed by the algorithm.

• Stemming or Lemmatization

With the term stemming is intended the truncating operation applied to

each single word. For instance, the word ”branches” would be truncated

to ”branch”. With lemmatization one word converges to its base-form

instead. A significant example could be the word ”saw” that with lemma-

tization is reconductible to the verb ”see”. In this case, if a stemming

operation is applied it does not have any effect because ”saw” cannot be

truncated in any way. These enable the algorithm to treat similar words

in the same way, optimizing even more the disk space.

• Word Sense Disambiguation

This includes deriving the right meaning of a word in the context it’s been

used in. For instance, let’s briefly analyse the use of the word ”arm” in

the next sentences:

”I have a dog bite on my arm.”

”It’s important to arm yourself with a solid education.”

The word and the pronunciation is the same but only the context can give

us the right meaning of the word. Algorithms that use this approach can

understand when the word ”arm” is referred to a human body limb or to

the verb.
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2.2 NLP tasks

In the last decade the advent of many deep learning methods led this field to

reach new state-of-the-art performances regarding precision and accuracy in a

lot of different tasks. They have a great potential that’s currently exploited by

a lot of companies.

• Speech Recognition

This term includes all the techniques with the aim, given a audio track

of a person speaking, to determine the textual representation of that very

speech. Many problems could come from the different pronunciation of

the same letters’ combination in different languages or to the adopted

alphabet. Some keyboard apps like Gboard and SwiftKey Keyboard use

this approach.

• Named Entity Recognition (NER)

Given a single or multiple sentences, it includes the techniques involved

in mapping the right grammar role to each term as proper noun, verb,

pronoun and so on. A common problem is caused by the different treatment

reserved to the same words.

• Sentiment Analysis

Given a sentence, this branch of NLP is aimed to interpret and find the

polarity of the sentence itself: is the speaking person angry or happy? Are

they satisfied or disappointed?

The use of negative words such as ”not” should have a different weight

based on the context. Consider the next two phrases:

”I’m not sure to have passed the exam”.

”I’m sure I have not passed the exam”.

They are similar, they use almost the same words but in the first case the

student is not secure about the mark is going to receive. In the latter one

instead there is the conviction of having to repeat the exam. And this

makes a big difference.
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• Text Classification

Given a sentence or a document, the algorithm involved is in charge of

assigning the text to a specific class from a pool of possible choices. An

issue could come from classes: maybe it’s not really clear the semantic sep-

aration of two classes and the algorithm has a high probability of wronging

the class to which it belongs.

• Machine Translation

It’s the process of translating some text from a spoken language to another

one without human intervention.

A lot of mainstream tools such as Google Translate and Reverso Context

apply techniques to perform this significant task.

• Natural Language Generation

This involves algorithms that analyse unstructured text and then produce

content based on the processed data. A concrete example is the GPT-3 [2]

language model, whose ability is to generate believable articles from the

text it was fed to.



Chapter 3

Machine & Deep Learning

Artificial Intelligence is one of the fascinating fields of study in computer science

nowadays. It refers to systems and machines trying to emulate what a cognitive

human brain can achieve.

The two most promising branches are the previously-called Machine Learning

(ML) and Deep Learning (DL).

Lots of people don’t know the difference between these terms and the general

term ”Artificial Intelligence” and thus use them interchangeably.

With the term ”Artificial Intelligence” we refer in general to the theory and

development of software capable of performing tasks not normally deliverable to

machines. They can vary from speech recognition to decision-making, and even

translation between languages.

Machine Learning is just a subset of AI and refers to the techniques that

enable computers to figure things out from the data and deliver AI applications.

Furthermore, Deep Learning is a subset of Machine Learning and it requires

computers to solve more complicated operations. This is why solving issues

with DL techniques requires more data than ML. Such algorithms must have

the highest possible number of entries available.

Each of these methods has in common the automatic learning as the approach

to solve the required task.

Let’s now overview some of the core concepts this thesis will recall.

13



14 3. Machine & Deep Learning

3.1 Core concepts

3.1.1 Feeding data

Usually, the data to input into the algorithm are in a file-based format (.CSV and

.XML are some of the most common ones). This file, more commonly known as

dataset, is split in multiple sections based on the training phase the programmer

is considering. One standard division that I used throughout this experience

involves the presence of a training set, a validation set, and a test set.

A training set consists of the entries used to train any chosen algorithm to

obtain a specific behavior.

The validation set is the one used to compare the performance of each algo-

rithm to understand which is better.

As the name suggests, the test set validates how the best model performs

over never-seen data.

It is a rule of thumb that the train set has the majority of the samples, but

the precise percentual can vary from dataset to dataset.

3.1.2 Learning approaches

There are different approaches to a ML/DL problem. Based on the issue, it’s

more convenient to proceed with one rather than another.

• Supervised learning

In this approach, every entry of the training set has the desired solution,

hence a label associated with it. A typical task in this sense is classi-

fication. The algorithm learns being explicitly told which class an entry

belongs to.

• Unsupervised learning

In this approach, as the name implies, the training data is unlabeled. It’s

as if a student studies without a teacher and has to find the solutions by

himself. A typical task is clustering, where the algorithm has to gather

different entries based on their features. The entries with similar features

will be grouped together.
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• Semi-supervised learning

Since it’s a human job to label each entry and it’s really time-consuming,

it’s easy to deal with a dataset with plenty of labeled and unlabeled in-

stances.

• Reinforcement learning

In this context, the learning system can observe an environment, pick an

action and obtain a reward in response (either negative or positive). As

the time passes by, it learns by itself which is the best strategy to pursue,

avoiding dangerous decisions. We can say it really learns from its mistakes.

3.1.3 Results evaluation

One core step is the human evaluation of what has been the model results. There

are three different kinds of results:

• Right fit

The model has the suitable complexity to generalize the input data well,

abstract the inner features and predict a correct, or at least trustable,

output.

• Overfitting

It means the model performs well on the training data, but it does not

generalize well. It’s as if, when a student prepares for an exam, they

memorize everything without really understanding the concepts. This

problem occurs when the model is too complex relative to the amount

and loudness of the data.

• Underfitting

It’s the opposite of overfitting. It happens when the model is too simple

to learn the underlying structure of the data. Stepping back to the student

metaphor, it’s as if they had not studied enough.
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The ideal situation is when the model right fits the input data. When it’s

in the overfitting or underfitting situation, there are many possible solutions to

tackle the problem, based on the as-is state.

If the model is overfitting, it could be simplified by selecting one or fewer

parameters, gathering more training data, or reducing the noise in the data

itself.

When in underfitting, the programmer could choose to select a more robust

model or feed better features to the learning algorithm or even reduce the con-

straints on the model.

3.2 Deep Learning

Since I worked on two DL algorithms, I thought it would have been necessary

to keep a special section about it.

3.2.1 Neural Network

What’s behind most of the DL algorithms is a structure called Neural Network.

It is essentially a network that uses neurons as layers of knowledge to conduct

the network itself to have, from an input X, one or more output Y [3].

The name comes from the initial insight to emulate the interaction between

neurons in the human brain.

Neural Networks have gained lots of attention recently because the amount

of labeled data is enlarging, and large NNs are now reaching new state-of-the-art

performances every passing year.

They have an input layer, one or more hidden layers, and an output one. Each

artificial neuron connects to another and has an associated weight and threshold.

If the output of a single neuron is above a specified threshold value, given by a

what is called an activation function, that node is activated, sending data to

the next level of the network. Otherwise, no data is passed.

There’s a vastness of different structures, and there’s not a single model that

performs better than any other one in all the tasks, so it is the programmer’s

job to build the model that suits better for the desired task.

For each input pattern, the network computes an expected value associating

the given pattern to a particular class or numeric value.
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The learning is obtained by setting at the beginning weights with casual

values and applying an activation function (referred as sigma σ in equation 3.1)

to perform the computation of the expected value.

output = σ(
m∑
i=1

wi ∗ xi + b) (3.1)

Based on the predicted value, the weights will be updated.

Considering the supervised learning case, every input sample is labeled, i.e.,

it has a correct value or class. If the prediction is equal to the actual value, then

the weights will be kept as they are, but the weights will be updated if it’s the

contrary. This behavior is performed to ensure that neurons wrongly on (or off)

could change their state in the following case to take into account.

In general, to improve the weight variation, it’s common to define a delta

rule that describes what is called ”the gradient descent”: it is a deterministic

method that leads the values of a function to follow the direction defined by the

gradient. It slows down in an approximation of the minimum value.

The process of computing the predicted value is called forward propaga-

tion. In contrast, the process of updating the weights through the hidden layers

is called backward propagation and represents one of the most complex as-

pects of a neural network.
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Figure 3.1: Structure and process of learning in a neural network

3.3 NN structures in NLP

Neural networks are grouped in multiple types based on the need.

The following are the most commonly used kind of NN nowadays:

• Multi-Layer Perceptron (MLP)

It’s the most commonly used and the most straightforward network on the

list. It’s constituted by one input layer, multiple hidden layers, and one

output layer with one or multiple neurons. It’s at the base of the creation

of more complex constructs as follows.

• Convolutional Neural Network (CNN)[4]

This type of network is similar to the MLP. Still, it relies on a mathematical

operation called convolution: given two functions, this operation consists

in processing them to produce a third one that expresses how one function
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influences the other, looking at the shape. Essentially, after reversing and

shifting one of the two initial function, it is calculated as the integral of

their product. The convolution function is then produced after the integral

has been evaluated for all values of shift. This kind of architecture is mostly

used to find patterns in image recognition and computer vision but some

layers that create a convolution kernel over a single spatial dimension could

be applied to NLP too.

The input object is tipycally a matrix, that well represents images, if con-

sidering to computer vision’s tasks. In case of NLP tasks instead, each row

of the matrix corresponds to one token, generally a word. Thus each row is

a vector that represents a word. Typically, these vectors are word embed-

dings like word2vec [21] or GloVe [20], but they could also be one-hot

vectors that index the word into a vocabulary.

• Recurrent Neural Network (RNN)

This kind of neural network looks very much like a feedforward neural

network (also known as MLP), except it also has connections pointing

backward. It’s a type of neural network capable of handling sequential

data and this is why it often works well on text. The difference from a

simpler network comes when dealing with very long sequences.

Every neuron is called recurrent neuron and at each time step receives the

inputs, as a normal neural network, as well as its own output from the

previous time step. In this way it can have a sort of memory of what was

processed before some word. Therefore this neuron has two sets of weights.

Two of the most common transformations are the Long-Short Term Mem-

ory (LSTM) [5] and the more recent Gated Recurrent Unit (GRU) [6].

• Attention [7]

Introduced in 2014, this constituted a groundbreaking idea. It relies on a

structure composed by an encoder and a decoder of text. This technique

allows the decoder to focus on the appropriate words at each time step.

It allowed a significant improvement on the state-of-the-art softnening the

effect of the limitations of RNNs in very long sequences.
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In the last years, this idea was perfected and it led to the next improvement

that follows.

• Transformer [8]

Applied in Neural Machine Translation, this architecture uses just atten-

tion mechanisms (coordinated with other kinds of layers) but without any

RNN or CNN layer. It’s faster to train and easier to parallelize.

The improvement comes from the encoder’s Multi-Head Attention layer

that encodes each word’s relationship with every other word in the same

phrase. The result is a different attention to each word. Even the initial

positional encodings are fundamental: dense vectors representing a word’s

position in the sentence. This provides the model with access to each

word’s position, which is crucial because all the following layers have no

way of knowing such aspect.

• BERT [9]

Developed at Google, this structure shows the effectiveness of self-supervised

pre-training on a large corpus. The authors stacked many Transformer

modules. Then they fine-tuned them on various language tasks.

This model results to be bidirectional, as the name suggests (Bidirectional

Encoder Representations from Transformers). To understand the impor-

tance of this model, it just needs to say that this model can predict whether

two sentences are consecutive or not. This is challenging when dealing with

tasks such as question answering.

• MUM [10]

This is a multimodal architecture. It means it’s been trained over different

modalities of input information at the same time. It understands what

a person says and can handle complex requests that usually take several

searches to be covered. It relies on a Transformer-based structure too, and

Google experts say it’s 1000 times more powerful than BERT. It’s also

transversal, taking into account 75 different languages. Its power resides

in the capability to consider various aspects regarding the same question.
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Therefore, it’s been thought of as a new DL model to improve the quality

of any Google search.

• LaMDA [11]

The acronym for ”Language Model for Dialogue Applications” is a brand-

new architecture based on the previously mentioned Transformer and can

follow a conversation even if the subject changes rapidly. It’s considerable,

knowing that the more commons chatbots can merely handle a linear con-

versation. Its application could rely primarily on the virtual assistants’

features to improve how they respond to us.

3.4 Evaluation metrics

To obtain good insights of any machine learning algorithm, metrics are one of

the crucial points to pursue. This choice influences how the performances are

measured and compared and when the developer could be satisfied with what

one has achieved so far. Different metrics are applied considering the task that is

tackling. A classification problem is divergent and requires a different approach

from a regression problem.

I had to tackle two classification problems on this job, so I’ll focus on metrics

regarding this branch in this section.

• Classification Accuracy

This first metric represents the number of correct predictions as a ratio of

all predictions made.

It’s one of the most commonly used values, but it is significant only when

considering a balanced dataset. It could result in a misleading metric if the

dataset is not well preprocessed before the train phase.

For instance, imagine you have to solve a binary classification problem.

You only have two classes where to choose from. A model scores a 90%

accuracy. It’s impressive at first sight but analyzing the dataset, you realise

it’s composed of 90% of entries belonging to class A and a mere 10% to

class B.
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The developed model will likely predict every new entry as part of class

A as it’s been trained over many more examples of that class. But in the

real world, when it will be asked to recognise an entry of class B, it will

probably wrong the assumption.

This case illustrates well how just a single metric is actually not enough to

be satisfied.

• Log Loss

Logistic loss is a metric to evaluate the predictions of probabilities of mem-

bership to a given class. It essentially measures how the model is sure to

assign a class to an entry when it is presented.

It’s a measure of confidence for a prediction by an algorithm and it can

have a real value between 0 and 1.

This is useful to punish or reward the model based on its confidence in the

prediction made. Given model parameters, this kind of reward/punishment

model involves selecting a likelihood function that defines how likely a set

of observations is. Because it is more common to minimize a function, the

log-likelihood function is inverted by adding a negative sign to the front.

• Area Under ROC Curve [ROC AUC]

This is a particular metric for binary classification problems.

The AUC describes the model’s ability to discriminate between positive

and negative classes. A numeric value of 1.0 is surely utopic and means

the model never wrongs a prediction. An area of 0.5 means the model is

not more accurate than a random guesser instead.

In this context, the numeric value is better explained with a plot of the

positive and the false positive rate for a given set of probability predictions

at different thresholds, also known as the Receiver Operating Characteristic

(ROC) Curve.

The false-positive rate is the ratio of negative instances that are incorrectly

classified as positive.

A good classifier tries to stay as far away from the center of the plot as

possible (therefore toward the top-left corner).
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Figure 3.2: ROC AUC graphic

The image 3.2 represents an example of how a good ROC AUC curve looks

like.

• Confusion Matrix

This is a technique used to determine the types of errors the model makes.

It returns a multidimensional array where the rows are the actual classes,

while columns represent predicted classes.

Using an image representation could help a lot when examining where the

model could be improved.

Figure 3.3: Confusion Matrix graphic



24 3. Machine & Deep Learning

Image 3.3 illustrates how a graphical representation of a confusion matrix

looks like. The ideal situation is when the main diagonal contains all

the samples. That would mean the model has always chosen the right

classification.

• Precision

An interesting information to get from the confusion matrix is what’s called

precision: the accuracy of the positive predictions. It’s obtained with the

following formula 3.2

P =
TP

TP + FP
(3.2)

where:

P = Precision

TP = True Positive instances

FP = False Positive instances

• Recall

Even called Sensitivity, is the ratio of true positive instances that are cor-

rectly detected by the classifier.

This aspect also includes the False Negative instances or those that have

been wrongly assigned to another class, as the formula 3.3 illustrates.

R =
TP

TP + FN
(3.3)

where:

R = Recall

FN = False Negative instances

• Harmonic Mean

It is often convenient to combine precision and recall into a single metric:

the harmonic mean. Often called ”F1-score”, it’s useful because it gives
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much more weight to low values. This means this value will be high just

if both precision and recall are high, as shown in equation 3.4

F1 =
2

1
P
+ 1

R

= 2 ∗ P ∗R
P +R

=
TP

TP + FN+FP
2

(3.4)

where:

F1 = Harmonic mean

The last three metrics are worthwhile but, depending on the task, the devel-

oper could not be interested in having the three of them similar values. In some

cases, it’s more important to care about precision instead of recall or vice versa.

In my case, when I used them to classify over multiple classes, I was interested

in reaching a good result with every metric. But this is difficult considering that

increasing precision reduces recall and vice versa.

This is why everyone talks about precision/recall tradeoff.
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Dataset

One of the most important parts in the development of a DL/ML model is the

dataset, or the source of learning information the model has to tap into.

4.1 Initial dataset

The image 4.1 illustrates how the initial information was represented.

Figure 4.1: Some samples from the original dataset

I was presented with a report containing 30.811 entries in many languages

where the most consistent were Italian, English, German, French, and Spanish.

Some entries in Croatian and Dutch were present too but they were a really

tiny minority and it was impossible to consider them in the development of a

full-functional DL model.

26
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Column description:

• Case Number : the unique identifier for each row

• Subject : the title of the customer request

• Description: the description of the issue the customer is experiencing

• Type: category to which the issue was classified by the customer service

• Sub Type: sub-category. It constitutes a specification of the Type column

I was asked to initially consider the Sub Type column as the target to label

each customer issue.

I took advantage of all the languages in the cleaning-text phase, but when it

came to developing the most important text classification algorithm, I just used

the Italian tickets. They were 25.683: the 83,3% of the initial dataset.

Figure 4.2 illustrates how the entries are distributed through the different

subtypes. It just considers the Italian dataset, as mentioned before.

Figure 4.2: The Italian instances distribution

Each subtype has been labeled with an appropriate acronym to detect im-

mediately the Type they belong to.
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The initial class names were with a complete sense. Some examples are ”Re-

funds and Returns”, ”Comments and Suggestions”, or ”Technical assistance”.

Even if a human would prefer the full-sense nomenclature, it was more conve-

nient to keep track of each class with the acronym method in the development

phase. Classifying by Type was always an option to pursue eventually. In this

way, I immediately switched from one target to another (Type or Subtype).

4.2 Derived dataset

To develop the clean-text model I reworked the initial dataset.

I discovered I had to remove entire phrases and not just single words. Thus

it became necessary to have my initial data in a different way.

As I will describe in section 6.1.1, the dataset was divided as follows:

Figure 4.3: Some samples from the derived dataset

The first column represents the original text but divided by sentences.

The second one has a binary value (0 or 1) indicating the importance of the

sentence. The 0 states the phrase should be considered as irrelevant, while the

1 value indicates that sentence is important and should be considered in future

evaluations.

For instance ”Grazie Saluti” is just a greeting sentence, adding no information

to a possible context and thus should be deleted. At the same time, when

a customer says ”Si prega di annullare l’ordine”, it’s clear it is indicating the

experiencing issue. That is the kind of message we want to keep.
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4.3 Data problems

The first problem I had to deal with was the presence of a lot of languages. I

was able to overcome it when I developed the simpler deep learning algorithm,

which focused on cleaning the text from sentences containing sensible data and

the useless ones such as greetings and thanks.

The much trickier task to classify each message in one of the multiple target

classes was not worth it because of a substantial loss in performance.

A second problem was the unbalancing nature of the dataset, clearly high-

lighting how some classes would have been more recognizable than others like

C2 or I1, as the image 4.2 expresses.

A deep analysis of the entries helped me perform an efficient categorization

and eventually exclude some irrelevant classes.
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Technologies

To accomplish what I was supposed to do, I took advantage of different kinds of

technologies.

• Docker [12]

Docker is a containerization software.

It offers an efficient volume management of any

application. It lets you integrate an application

regardless of the running Operative System. It

uses virtualization to deliver software in pack-

ages called containers.

It has been used to encapsulate the software in a

pluggable microservice, exposing APIs to exploit

the realised functionalities.

• Tensorflow [13]

Tensorflow is an open-source end-to-end ma-

chine learning platform. It offers several features

for modelling the input data in tensor format

and developing and training ML models.

It is used within the microservice to build and

train the text classification models.

30
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• Pandas [14]

Pandas is one of the most used tools to perform

data analysis and datasets manipulation.

It is used within the microservice to load and

manipulate the input content of the various

APIs.

• Scikit-Learn [15]

Often abbreviated as Sklearn, is a tool that of-

fers ML implementations of some of the most

used ML algorithms (Naive Bayes, Linear SVC,

and many more).

It’s been used to try different and simpler solu-

tions than the chosen one and to compute statis-

tics and useful graphs to understand how the

models were performing.

• Python [16]

Python is a high-level programming language.

It’s the main language used in the data science

industry.

It is used to develop the entire backend

codebase.

• Google Colab [17]

Colab is an online platform hosted by Google

that lets you experiment with your code with

the possibility to use Google’s calculus power.

It’s been used to develop the DL model struc-

tures quickly and test them using the GPU and

TPU temporarily offered.
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• MLflow [18]

Mlflow is a recent tool to automate the handling

of an ML model lifecycle. It’s been recently

added to the tools used in the company, and it

gives you the chance to handle the versioning

of a ML model and serving it over different

environments. It also lets you store information

about metrics and tags used to train and

recognise the model. It’s currently applied to

keep up-to-date the models integrated in the

microservice I developed.

It allows the user to carry out a standardized

deployment of an ML model.

• Flask [19]

It is a backend micro-framework at the base of

the microservice structure.

To merely expose some APIs, it was not neces-

sary to adopt a more complex framework.
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5.1 The ecosystem

Figure 5.1: The entire ecosystem

The base component of the infrastructure is the Docker Network. Its scope is

to hold all the containers. The structure is composed of four types of microser-

vices.

1. Message Broker : the microservice responsible to handle the task queues

2. Data Persistency : the microservice used as a database to store the data

3. OTML: it’s the main tool. In the frontend side there’s an interface built

with the open source framework Angular. At the same time, for the back-

end, the team has chosen to code it in Python with the help of the frame-

work Django and Celery, a software to handle tasks asynchronously.

4. ML services : the set of ML microservices. The text classification microser-

vice is part of these entities.
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How does it work

When a user acts as the frontend interface, in the backend side Django com-

municates to the message broker which tasks need to be processed, and Celery

will generate the task id, the unique identifier of each task. As a consequence,

the message broker will hold the queue of documents. The number of setted

workers constrains this asynchronous communication.

Each worker is a process unit; it tells how many tasks could be processed in

parallel. The software whose work is to set this kind of parameters is the Python

WSGI Gunicorn. Celery even has the role of enqueueing a document when it’s

ready to be processed.

A practical example:

5 documents are loaded by a frontend API. After that, a proxy server called

NginX will deliver the request to the backend. Then Django, with the support

of Celery, communicates to the message broker microservice to process these 5

documents. As a consequence, the tasks will be registered in the RabbitMQ

instance.

For each document there’s a unique task. An example would be to get the

entities from an input text. This task is computed for each document.

If the system is set to work with two workers, then two documents will be

processed simultaneously while the three remaining will wait until the workers are

available again. When each task is being processed, its status will be registered

and sequentially updated on the Postgres database.

These tasks usually exploit some features exposed in the ML microservices.

This means that when a task is processed, it will make some calls to the mi-

croservices that expose the features that respond to what the user requested.

The tool’ structure’s advantage is that it can be sold to a specific customer

based on its needs. Being constituted by pluggable microservices is convenient.

Once the customer has purchased the use of the Tool, the settings will be such

as to guarantee only the access of the purchased services.

To be usable by more users, some features have been developed even exploit-

ing Google services. So the offer includes both on-premise and external provider

features.
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Text classification techniques
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Chapter 6

Text anonymization

6.1 The model

In this chapter I’m going to focus on the design of the first of the two AI models

I developed in this experience.

It has as the main goal to clean every ticket from any sensible data and

useless words such as greetings and thanks, looking to the next classification

and especially to the future developments (see chapter 8).

What motivated me to build up this model was a previously done study of the

initial dataset. Looking to a possible sentiment analysis, I tested many ticket

messages over what is the Google Sentiment Analysis API. It was clear that

marginal expressions like ”Thanks”, ”Cordiali saluti”, ”Best wishes”, ”Have a

nice day”, and many more were influencing the judgment of the API such that

some clearly negative messages were turned as neutral or even a bit positive. The

latter is the case when a negative message is concise. Those kinds of words usu-

ally have a big impact and indicate the sentiment of the main message. However,

my situation was not like this.

Later on, it had been more apparent that even in a text classification that

words wouldn’t have a minimal discriminative power. Their deletion would have

been necessary.

As explained in section 1.2, the additive presence of sensitive data could

have been interpreted as a way to discriminate whenever a sentence is positive

or negative. A machine cannot have a bias that, for instance, when there’s

the name ”Giulia” is a more positive sentence than when a name like ”Mike”

appears.

37
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The need to rework the input text was clear, and a stopwords list would not

have been enough to comprehend all the possible cases.

6.1.1 Preprocessing

One of the first questions that came to my mind was, ”How can I treat a dataset

like that?” After all, I had just what was supposed to be the dataset to feed the

next AI model.

I spent some days looking over the web to find if someone had passed before

a problem like this. Knowing some messages came from mail threads, I read the

paper ”Email data cleaning” [22] thinking it would have given me some insights.

I was at the first experience in the field with a machine learning model and

it seemed not to be the right route to pursue as a beginner.

With the help of Pandas, I examined one more time the dataset, and I dis-

covered that what I had to remove were entire phrases and not just single words.

Then I used a little script to process the input dataset and rework it in the

format exposed in section 4.2.

That problem turned out to be a binary classification. That way, I would

have been able to easily classify each input phrase as relevant or not.

The dimension of the dataset was not a problem since I was presented with

more than 1000 sentences for each of the main languages: Italian, English,

French, Spanish, and German. That number was enough because there were

an almost equal number of positive and negative cases for each language.

I composed the train set of 80% of the original dataset and then I split the

remaining 20% between the validation and the test set equally.

Each set of samples was then converted to be a tensor, a more suitable

object for the model I was about to develop.

6.1.2 Model development

The choice of the ML development platform fell back on TensorFlow since it was

the one I used in previous courses I enrolled in, and the company too pushed me

in that direction.

The objective of this model’s development was to use just one model inde-

pendently of the main language. To have an adaptive model like this makes this

task more complex.
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Then I moved on remembering the transfer learning approach, and I

started looking around to find something that should work for me.

I came across a Google implementation of a multilingual text embedding

[23] that covers 16 different languages and is based on CNNs (see section 3.3

for a more exhaustive explanation). In the embedding description, one of the

intended uses is text classification and is optimized for a multi-word length text,

like sentences. This text embedding is inspired by the paper ”Learning Cross-

lingual Sentence Representations via a Multi-task Dual Encoder” [24].

Then the only job remained was to integrate it and see with a simple archi-

tecture how the model would perform.

Hyperparameter tuning

One of the most important steps in developing a DL model is the hyperparameter

optimization. A hyperparameter is a special parameter that could be modelled

and affect the learning process. There are two possible types:

• model hyperparameter

This is the kind of parameter that refers to the model selection task as, for

instance, the choice of the nature of a NN layer or the number of layers.

These values cannot be inferred in the training process.

• algorithm hyperparameter

The nature of these parameters resides in the training process. Parameters

such as the learning rate or the batch size, i.e. the number of training sam-

ples to process before updating the model’s parameters, directly influence

the model performances.

The performed tuning phase was conducted principally using the

grid search approach: it consists of selecting a set of parameters to tune in

the training process and, for each one, select a set of possible values to inves-

tigate. Grid search then trains the model with each parameters’ permutation

in the resulting Cartesian product of the chosen sets and evaluates the model’s

performances. This evaluation is performed over a held-out validation set. The

output of the grid search is the setting that reached the best score when testing

the model on the validation set.
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One more used approach was early stopping: it aims to stop training when

a specific metric has not improved in a certain number of epochs. It is used when

there are many parameters to update each time, and the training process could

be uselessly long.

The metric I chose to monitor was the log loss (see the section 3.4). Tensor-

Flow lets you use a callback to do so. Two of the most important parameters

to set are the number of epochs to wait from stopping and the flag to restore

model weights from the epoch with the best score values. I used these same two

settings.

Model compilation

A special paragraph is needed to explain two crucial metrics in the model’s

configuration for training:

• the optimizer

I adopted one of the most commonly known optimizers: Adam [25]. It’s

an optimization algorithm. It is more effective than Stochastic Gradient

Descent because it merges two advantages from two variants of that tech-

nique. It uses indeed

1. the Adaptive Learning Algorithm (AdaGrad), which maintains

a learning rate for each parameter that improves performance on

sparse gradient problems. Working with natural language involves

this issue;

2. the Root Mean Square Propagation (RMSprop), which uses a

similar approach to AdaGrad, but these learning rates are adapted

to how quickly the gradient descent is changing. This means the

algorithm does well on online problems, i.e. when data are available

in sequential order, and the best predictor is updated at each step.

The essential is that Adam computes both the squared gradient and the

exponential moving average of the gradient itself.

• the loss function

I selected the binary cross-entropy function since it is a binary problem.

The purpose of this function is to compute the cross-entropy loss between
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true and predicted labels. In practice, this function is set to work with

probabilities with values in the range [0, 1] instead of working with logits.

Since both set of labels have a fixed number of possible values, I had to deal

with two discrete probability distributions. Thus the function is defined as

shown in equation 6.1

H(p, q) = −
∑
x∈χ

p(x) ∗ log(q(x)) (6.1)

where

p, q = two distributions

H(p, q) = cross-entropy of q relative to p over a given set

χ = topological space

x = support of a measure in χ

Model Structure

TensorFlow provides you two different APIs to have the chance to build any

model: Sequential and Functional.

1. Sequential

It’s the easiest way to create a neural network. Basically, it allows you

to create the model layer-by-layer but not sharing or branching layers. It

suits better for models with just one input and output.

2. Functional:

the advantage of using this API is that it is more flexible and covers all the

lacks of the previously mentioned API regarding branching, sharing them,

and having multiple inputs and outputs.

The choice to use one instead of the other is up to the nature of the task to

solve. In my case, I had a single output, the text sentence, and I had to predict

just a single data, whether or not the sentence was valid. It was clear my choice

would have taken the side of the Sequential API.

The next step was to choose the number and the dimension of the layers

to stack after the text embedding. Observing the model’s performance initially
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adding just an output layer of 1 neuron, I increasingly added layers and neurons.

I ended up with two hidden layers of 96 neurons each and an output layer of just

1 neuron since the possible choices were just two and were mutually exclusive.

The nature of these layers is Dense, meaning that every neuron of a previous

layer is directly connected to each neuron of the next one.

Figure 6.1 shows the final structure of the developed model and shows another

interesting piece of information: the number of parameters.

The embeddings constitute the majority of parameters. Some predefined text

embeddings are set to leave the weights as they are, but this is not the case.

I thought the chance to change all the weights slightly would have been

an opportunity to suit that layer to my task better and thus achieve better

performances.

Figure 6.1: The structure of the text anonymization model

6.1.3 Model Saving

Looking to the TensorFlow documentation, there are two format to save the

model: SavedModel and HDF5.

1. SavedModel :

This format contains a complete TensorFlow program with computation

and trained parameters, resulting in an execution graph. It has a significant

advantage: it does not require the code used to build the model to run it;

thus it’s more convenient when it’s time to deploy it.
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It’s even possible to just save and load weights using checkpoints while

training.

2. HDF5 :

The acronym for Hierarchical Data Format (version 5) uses object config-

urations to save the model’s architecture. It’s older than the SavedModel

format and was defined back when Keras, the main library now integrated

in TensorFlow, was independent and aimed to support multiple backends

without being constrained to anyone.

With the advent of the version 2.x of TensorFlow, it should be used just if

a file compatible with older versions is needed.

Working with TensorFlow in its 2.5 version, it seemed natural to adopt the

SavedModel format to save any model I had to develop since these would have

been integrated into a brand-new tool with no previous dependency.

6.2 Time

One core aspect in training, especially in hyperparameter tuning, is the needed

time since it’s not a deterministic computation.

In this context Google Colab turned out to be a time-saver. As explained in

chapter 5, it makes available the power computation Google has. In this way,

instead of waiting half-hours like in a normal training that use the PC’s CPU, I

used the TPU [26], and it occured me just a few seconds.

This resource is limited, and just the users with a contract for Google’s G-

Suite can use it, and just for a limited time, but it is enough for a full-time day

spent almost entirely on training.

6.3 TensorBoard

An exciting option that comes with the use of TensorFlow is the tool Tensor-

Board. It gives the chance of examining graphically and clearly the training

trend of a specified model.

Figure 6.2 shows one tab of the interface.
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Figure 6.2: The typical TensorBoard interface

On the left side, under the section ”runs” it shows all the runs memorized

when training and which have been selected to be displayed on the right.

The Histogram model and the Offset time axis options let you change the

way the graphics are depicted.

Talking about the main tools offered by the navigation bar, the Scalars

tab shows the progression of loss and other metrics through the epochs. Some

trackable values are the learning rate, the accuracy, and the training speed.

The Graphs tab shows the structure of the model and how each layer is

connected. This is useful to check if the model looks as intended.

The Distributions instead is referred to the tensors’ weight distribution. It

lets you have a look at how weights and biases change over the epochs.

The photographed tab, Histograms, shows in different formats the tensors’

distribution in training for each layer (embedding, dense, dense 1, and dense 2).

6.4 Results

The evaluation of this model was satisfying. The model had been tested over

the 5 main languages of the initial dataset: Italian, English, German, Spanish,

and French.

Even though the dataset was composed originally by a larger number of

Italian tickets, thanks to the rework exposed in section 4.2, I was able to obtain
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a discrete number of single sentences for each language.

I consequently divided the dataset by language in 5 subsets, each one com-

posed by 1000 sentences coming from both thread mail and user requests made

from the business user website.

The division of each dataset was constituted as follows:

• training set: 80% - 800 samples

• development set: 10% - 100 samples

• test set: 10% - 100 samples

I trained the model for 10 epochs and with a batch size of 16. The ob-

tained results were remarkable with various metrics.

I initially based my judgement looking at the accuracy and the log loss. In

both training and validation sets the numerical values are quite good.

The graphic exposed in figure 6.3 shows that. There’s a moment in which

the model does not improve its predictions anymore, showing a bit of overfitting,

especially from the 6th epoch.

Figure 6.3: Graphics’ performance of the anonymization model

The results in the test set showed an accuracy of 91,2% and a loss value

of 0.192.

Even if these metrics gave me good insights of how the model was performing,

I needed to be really sure that evaluations were not a coincidence.
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Consequently, as anticipated in the 3.4 section, I then adopted the commonly

used ROC AUC curve.

Figure 6.4 is the graphical representation of the ratio between the true

positives and false positive rates.

Figure 6.4: ROC AUC curve graphic

It is also possible to extract a numeric value that indicates how good the

graphic is. It’s a number in range [0, 1]: the nearer to 1 the value is, the better

it means.

The rounded value associated with this graphic is 0.979. This metric con-

vinced me that the model was ready and I could have moved to the next, and

more complex, task.



Chapter 7

Multiclass Text classification

The solution I will explain is to resolve the original problem: automate the

labeling process performed by humans.

A person has to choose between many different choices, each one mutually

exclusive. Thus the problem I was facing was a multiclass one and not a multi-

label problem.

The difference is that the latter has more labels associated with the same

input as a possible output, whereas in multiclass problems, I can have just one

correct label.

When it came to developing the main algorithm, one of the initial thoughts

was to replicate the structure of the previous model. The performances, however,

were poor, even changing the last layers’ structure. I understood immediately

that a significant change was needed.

7.1 A classical approach

After talking with professor Martoglia, I decided to try something simpler but

maybe more effective: this led me to try classical ML algorithms.

In these terms, Sklearn implements many of them: I took advantage of these

very implementations, letting myself be guided by what Sklearn developers sug-

gest [27].

Following the schema reported in figure 7.1 from the START, I discovered

what were the algorithms that would suit better: I had more than 50 samples,

47
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Figure 7.1: The cheat-sheet available at [27]

I wanted to predict a category with labeled data, but I had available less than

100k samples (25683 to be correct).

The first choice, therefore, was the Linear SVC

7.1.1 Linear Support Vector Classification

The Linear SVC implements the supervised algorithm SVM (Support Vector

Machine) applied to classification tasks.

A support vector machine builds up a hyperplane or a set of hyperplanes

(depending on the specific implementation) in a multi-dimensional space, which

can be used for classification.

In general, a good separation can be obtained from the hyperplane, which

has the greatest distance from the closest point of each class. The more evident

the separation between the classes is, the easier to classify a sentence will be.

In the case of a linear SVM, a sentence is represented as an n-dimensional

vector, where n is the length of the vector itself. In a hyperplane of n-1 dimen-

sions, that vector is presented as a data point. The objective of the algorithm is

to find an optimal boundary between the outputs. This means maximizing the

distance from the hyperplane itself to the nearest data point of each class.
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Figure 7.2 illustrates how a good hyperplane would be represented.

Figure 7.2: Examples of good and bad SVM generalizations

The hyperplane H1 perfectly divides the two classes with a good margin from

the nearer data points (the two circled in red).

H2 does not represent a good generalization since it does not separate the

classes.

Preprocessing

As in previous experiments, I merged the Subject and Description columns to

have a more significant input, deleted any stopword, lowered and tokenized each

word.

After this process, I converted both text and labels in the TF-IDF repre-

sentation. The Term-Frequency times Inverse Document-Frequency is a mea-

sure to count each word’s occurrences and give them an appropriate weight [of

importance].

Sklearn offers different classes to perform this operation [28]. The chosen one

is TfidfTransformer, that evaluates the idf as follows:

idf(t) = log
n

df(t)
+ 1 (7.1)
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where:

n = number of instances in the dataset

t = analysed term

df(t) = number of instances in the dataset that contain the term t

The tf-idf value is then calculated by:

tf − idf(t, d) = tf(t, d) ∗ idf(t) (7.2)

Each instance is then normalized as the equation 7.3

vnorm =
v

∥v∥2
=

v√
v21 + v22 + ...+ v2n

(7.3)

where:

||v||2 = Euclidean norm of the vector v

To process the classes, I used a LabelEncoder object that allowed me to

convert text labels to a numerical form.

Results

With a näıve approach to the linear SVC algorithm, I obtained an average ac-

curacy on a validation set of just 54%. That was not an encouraging result, but

I did not give up.

Since I was working with sparse data, i.e. data comprised of mostly zero

values, I chose to apply a Single Value Decomposition [29] to reduce the input

text dimensionality. I then applied a grid search to fine-tune different parameters

such as ”penalty” and ”C” (which dictates the strength of the regularization).

These upgrades were helpful and enhanced the accuracy up to 58,3%. Still, this

was not satisfactory as the company expected.

7.1.2 Näıve Bayes

Following the Sklearn map (figure 7.1), the next question was if I had to deal

with text data, and the answer was obviously yes. Then I moved on trying

with the Näıve Bayes algorithm. It is based on Bayes’ theorem with näıve

independence assumptions between features. It’s then a probabilistic classifier.

The Bayes’ theorem says what is the outcome of a posterior probability as

follows:
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p(y|x) = p(x|y) ∗ p(y)
p(x)

(7.4)

where:

x, y = events to which a probability is associated

p(y) = prior term

p(x) = normalization term

p(x|y) = likelihood

In algorithm terms, x is a feature vector of m components [X0, ..., Xm] and

y is the target to predict in a set of Y possible classes.

This algorithm assumes that words’ position does not matter and considers

just the occurrences of the most relevant words. This is called Bag of words

assumption, and it leads to having conditional independence between each

feature of the text sample given a specific class y.

In terms of equations, the previous paragraph is interpreted with the formula

7.5:

P (x1, ..., xn|y) = P (x1|y) ∗ P (x2|y) ∗ ... ∗ P (xn|y) (7.5)

One of the most popular implementations is the one Sklearn has to offer: the

Multinomial Näıve Bayes classifier that, as the name states, has been developed

for multinomial models.

In this context, to predict the most likely class, the equation 7.6 is used.

ymap = argmax
y in Y

P (x1, x2, ..., xn|y) ∗ P (y) = argmax
y in Y

P (y)
∏

x in X

P (x|c) (7.6)

Preprocessing

Even if the Multinomial NB classifier is suitable with discrete features, in practice

counts like tf-idf work too.
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I reused the preprocessing undertaken with

SVC and used a TfidfVectorizer object to set a

limit of features to take into account.

This way each sample of the train, validation,

and test set would be represented as a record of

unique numbers along with their weight

calculated by TF-IDF, as shown in the figure

aside.

The first tuple value represents the sample id,

the second one is the unique integer of each

word and the real value is the TF-IDF score.

Results

Before proceeding with evaluating multiple metrics, I considered as fundamental

the accuracy value. However, using the MultinomialNB the accuracy score was

disappointing, presenting just a 50,82% of accuracy.

This outcome led me to look around to other classical solutions.

7.1.3 Logistic Regression

The last trial I had with classical ML algorithms was directed to the Logistic

Regression, specifically, the extension named MultinomialLR, as suggested in a

consulted article [30].

Even if the premises were different, as in the article the algorithm is applied

on an almost perfectly balanced dataset with more samples, I wanted to give

it a shot. I had more than two possible categories, and I had to deal with

a categorical variable, as there was the chance to acquire one of the possible

values that cannot be ordered in an objective way.

Basically, the idea is to have weights w for any class k. This kind of algorithm

is based on probability, too (see equation 7.7).

P (y = k|x) = expwT
k x∑

expwT
i x

(7.7)

The chosen class will be the one with a higher probability.
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In the context of a multiclass classification, one choice is to approach the

problem with a strategy between the One-vs-Rest (OvR) and the One-vs-One

(OvO). These are two heuristic methods to apply binary classification for mul-

ticlass classification:

1. One-vs-One:

the original dataset is split in a binary one for each class versus every other

class. This means more datasets and models, precisely:

N =
|Y | ∗ (|Y | − 1)

2
(7.8)

where:

Y = set of classes

N = number of datasets

This approach is suggested for SVM because the performance does not

scale, looking to the dataset size.

2. One-vs-Rest :

the difference between the previous strategy is that applying the divide-

et-impera technique, the dataset will be split into multiple binary classifi-

cation problems, one for each class.

This approach is broadly used with algorithms that predict probabilities,

just like Logistic Regression. This is why I pursued this choice.

However, neither this solution was suitable for the problem, achieving the

worst accuracy score out of the applied methods until that moment: 39.5%

accuracy, showing at the same time awful outcomes in the test set even with

precision (28%), recall (37%), and harmonic mean (29%).

Performance summary

Here’s a summary of what are the achieved results of the three classical algo-

rithms.

Clearly, what the Sklearn developers suggested 7.1 was right as the first

selected choice is the one that achieved the best results, even if not satisfying.
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Linear SVC Näıve Bayes Logistic Regression

Accuracy 58,3% 50,82% 39,5%

Other metrics

precision: 28%

recall: 37%

F1: 29%

7.1.4 Ensemble Learning

When we talk about Ensemble Learning we mean a series of methods that are

targeted to use multiple models to gain a better predictive performance as com-

pared to each single model.

In more human terms, it’s like comparing and combining the thoughts from

different people that caption an event from different perspectives to obtain a

more realistic view of what happened. This is due to the risk that a single

person cannot consider the whole environment in which something happened

and omits some details.

Three are the main used techniques:

1. bagging :

It aims to create a set of classifiers having the same importance. At clas-

sification time, each model will vote on the outcome of the prediction, and

the overall output will be the class that has received the most votes.

2. boosting :

Each classifier affects the final grade with a certain weight. It will be

calculated based on the accuracy error that each model will commit in the

learning phase.

3. stacking :

a further classifier is introduced (called meta-classifier), which uses the

predictions of other sub-models to carry out further learning.

One of the most powerful libraries in the ML field is XGBoost that, as the

name suggests, pursues the boosting technique.
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It has different advantages:

• regularization:

this algorithm is known to be a regularized boosting technique.

• parallel processing :

it implements this kind of processing that makes it really fast.

• high flexibility :

it allows to customize optimization objectives and criteria.

• handling missing values :

the algorithm tries different approaches when encountering a missing value

and learn how to deal with them in the next predictions.

• tree pruning :

when defining a maximum depth of the decision trees, the algorithm starts

to reduce the tree backward just when reaching that level and removes the

division when it is not worth it anymore.

• built-in cross-validation:

it has that technique as predefined at each iteration.

To demonstrate this claim, it has been used in countless winning solutions

in competitions on Kaggle [31], a famous platform where a lot of challenges are

planned to improve the skills of any data scientist.

Because of these premises, it is right to explore this approach as well before

trying something mathematically more challenging and complex.

Model development

The choice to use a XGBClassifier let me choose a great variety of parameters

to obtain the best possible results.

While developing it, I used one more time the grid search approach to fine-

tune each of the possible parameters of the resulting decision tree:
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• learning rate

• max depth: it states the maximum depth of the resulting tree

• min child weight : the minimum sum of weights of all observations required

in a child

• gamma: it represents the minimum loss reduction required to do a split

• colsample bytree: the fraction of columns to be randomly sampled for each

tree

• objective: the required classification. In my case, it always had the values

”multi: softmax”, indicating the kind of classification and its evaluating

function

• nthread : used for parallel processing, defying the number of system’s cores

to exploit

• scale pos weight : : to help fasten convergence

Results

This algorithm achieved the best performances speaking of classical ML algo-

rithms and this constituted a real improvement, even if it had not been the

definitive, since metrics did not pass the imposed thresholds to consider an ex-

cellent classifier to my task.

Accuracy Precision Recall F1-Score

71,5% 72,0% 75,1% 73,0%
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The confusion matrix in figure 7.3 gives an additive hint of the metrics’ values:

Figure 7.3: The confusion matrix of the XGBoost classifier

The 21% of error when misunderstanding the class 4 with the 2 and the

multiple 15% errors when classifying the class 2 made me think there still were

high and not acceptable misclassifications. It was prohibitive to consider it as

the definitive solution.
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7.1.5 CNN

Knowing some researchers demonstrated CNNs in some NLP tasks could per-

form well, I tried to pursue that route. I firstly merged together the columns

”Subject” and ”Description” (see section 4.1 to deepen into the characteristics

of the dataset) in one more exhaustive column.

Since most DL algorithms are number-based, I then used a tokenizer that

converts words to numbers to create a words’ index. To do so, I sequentially

cleaned up the text, removing punctuation and lowercasing any word. The input

entries were then padded because when dealing with NN in NLP, the sequences

need to be of the same size. The sequence dimension is based on a measure of

the average length of the message tickets and the distribution of the number of

words.

The same was performed on the labels, with the extra to turn list of labels

in numpy arrays since it’s the expected format from the algorithm. The number

of labels was vast: 88 different subtypes were presented in the dataset.

Model structure

The complexity of the task came out when developing the requested model. I

relied on the Sequential API, since the concepts of input and output objects were

the same as the model whose development is expressed in the previous chapter.

Figure 7.4: The structure of the realized model

As shown in figure 7.4, I used an embedding layer that takes in input an

integer matrix of size (batch size, input length). The output is a 3D tensor

with the shape (batch size, input length, output dimention).
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The role of this layer is to store one vector per word. Then, when called, the

sequences of word indices are converted into sequences of vectors.

A LSTM layer was then applied. This operation would have been necessary

to learn better from long-term dependencies.

The next step was to stack over a Dense layer of 88 neurons, one for each

of the possible outputs, selecting softmax as the activation function; this func-

tion’s choice is soon explained. The output class of the model is modeled as a

probability distribution. When dealing with a multiclass problem, the output

conditioned distribution appears to be a multinomial distribution.

When in the last layer of the NN, the model has computed the score sk(x)

of every class for an instance x. This function then computes the probability p̂k

that the instance belongs to a class k as expressed in formula 7.9.

p̂k = σ(s(x))k =
exp(sk(x))∑K
j=1 exp(sj(x))

(7.9)

where:

K = number of classes

s(x) = vector with the scores of each class regarding the instance x

σ(s(x))k = estimated probability of x belonging to a class k when given each

class’ scores for that instance x

The exponential of every score is normalized dividing by the sum of all the

exponentials. These outputs are often called logits.

As the last operation, every logit that is not the one with the highest value is

rounded to 0, while the maximum is rounded to 1 instead, resulting in the value

of the performed prediction.

Between the LSTM and the Dense layer, I added a spatial dropout layer.

Dropout [32] is a popular technique to help prevent overfitting in a neural net-

work: it randomly ”turns off” with a specific probability a set of neurons each

time a weight update is going to be processed. The objective is thus to realize a

network less sensitive to the specific weights of neurons. When adding this type

of technique, I considered two tips that came out from the previously mentioned

paper [32]:

1. to set a probability value around 20% to have a tangible effect

2. enlarge the network to have more chances to learn independent represen-

tations.
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To help in finding better results, I applied a grid search over numerous param-

eters: the batch size, the number of epochs, the optimizer, the learning rate, the

momentum (a variant of the stochastic gradient descent, specifically a coefficient

that is applied in the weights update), and the activation function.

Callbacks

• Early stopping : it was applied to monitor the log loss on the validation set

when there’s not an improvement to prevent excessive overfitting

• Learning rate scheduler : it was used to slow down the learning rate since

I initially found out the model was overfitting too early

• Reduce Learning Rate On Plateau: sometimes this callback turns out to

be useful when a plateau is reached, considering a certain metric; in my

case, it was the validation loss

Anyway, these techniques were not enough.

Results

The considered baseline was constituted by a random guesser: it would have had

the chance of guessing the right label around of 1%.

The improvements as compared to that

value are massive but not satisfying.

I used as the input data both cleaned and

dirty tickets, where ”dirty” means not

processed with the text anonymization

neural network.

The maximum result I achieved was 60%

accuracy and a loss of 1.5 in the validation

set.

The graphics in figure aside (7.1.5) show

that.
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7.2 An approach change

7.2.1 Introduction

After facing the previously mentioned troubles, a collation was seemed necessary.

In the crucial meeting at the beginning of May, I expressed my perplexity in

achieving the wanted results by looking at the data I had to deal with.

We have concluded that, in the face of only 30.811 samples divided into five

languages, it is not possible to create a classifier capable of achieving satisfactory

levels of precision.

Collecting further data reports has been identified to obtain greater accuracy

in the model without running into the problem of overfitting caused by the

complexity of the model itself and an eventual addition of artificial samples for

the minor classes.

Since getting further data is unfortunately not immediate, it was decided to

restart by analyzing just a subset of the already given labels.

Having obtained in the first task the most satisfactory results in terms of

accuracy and execution time using a DL model based on neural networks, I

decided to start from this approach in such a way as to improve and refine this

model over time when new subtypes are inserted to be classified. I preferred this

solution instead of using a more traditional ML algorithm with the risk of not

being able to use it anymore when the amount of labels increases. This should

therefore be beneficial in terms of

• time

• effectiveness of the solution

• modularity

Data analysis

From an analysis of the balancing of the dataset; it was decided to proceed with

the following classification alternatives:

• since the Types column has fewer possible classes than the Subtypes one,

a workable solution could have been to consider it as the target
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• to reduce the number of deemed subtype classes, imposing a specific thresh-

old (i.e. 1000, then 750 and finally 500) of samples per subtype.

The first undertaken route was the first listed.

7.2.2 Classification by Type

Data loading

Having the classes labeled in the format ”Letter-Number” was just necessary to

extract the letter.

Using the Italian dataset, I decided to divide it into the following percentages:

• 90% training set - 23.115 entries

• 5% validation set - 1284 entries

• 5% test set - 1284 entries

The division by type resulted in being as described in figure 7.5:

Figure 7.5: The balance of the dataset grouped by Type

The number of classes decreased from 88 to 15. However, the unbalancing

problem persisted, so I decided to cut off some categories. Looking at the data,

it’s evident there’s a great gap between classes like B, with 1082 samples, and J,

with just 387 samples. The configured threshold was 750 samples, resulting in a

dataset as follows in figure 7.6:
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Figure 7.6: The remaining classes with a number of sample greater than 750

This decision sensibly reduces any possible reason of bad performance due to

the unbalancing of the dataset, having enough samples for each remaining class.

Data preprocessing

As a preprocessing task, I merged the ”Subject” and ”Description” columns from

the dataset to have just a single input text.

I then used a pair of regular expressions to substitute any bad symbol like

numbers, and letters followed by one or more underscores and replace any symbol

like parenthesis, brackets, ats, and punctuation marks with a blank space.

To improve this process, I then removed any stopword and any possible Italian

greeting. I then tokenized any input text, padded it, and transformed it to form

a new tensor of sequences of shape (number of samples,100), where 100 is the

maximum number of words permitted in each sample.

The pad action aims to insert, if needed, to the left any 0s to achieve a length

of 100 numbers, each one representing a word in the word index. This is just to

have a nicer input to the model I was going to develop.

Model development

As a substantial and meaningful baseline, I decided to use the Zero Rule better

than a random baseline.

In classification problems, it aims to use the most present class in the dataset

to predict each entry. In my case, the class with the most number of entries

was C, and subsequently, the value of the Zero Rule is 33,44% precision. That
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undoubtedly raises the minimum level of acceptance since a random guesser

would have had the 14,29% precision.

The TF Callbacks could be extremely useful. Hence, I set an early stopper, a

learning rate reducer on a plateau, and a learning rate scheduler, just like I did

in the initial developments (see section 7.1.5). The idea was to try each of them

and see what combination would be better, but after achieving decent results

with metrics such as accuracy and log loss.

Next, I began to develop the model with two different approaches:

1. CNN

Figure 7.7 represents the resulting structure.

The initial embedding [33] has a shape of (None, 100, 64), representing

respectively the batch dimension (not restricted to any size), the input size

(a sequence of 100 numbers), and the embedding dimension (maximum 64).

This means the model will have as input a matrix of integers whose size is

(batch, input length). Moreover, the largest input’s integer should be

no greater than the vocabulary size, which in my case is 8000 words, the

most frequent ones. The latter value was chosen based on the number of

unique tokens found: 17902. Maintaining about half of the values, it’s a

good approximation.

Any couple of hidden layers was interspersed by a dense layer, with the

scope of preventing overfitting.

The next is a 1D convolution layer [34] that has the role of creating a

convolution over a single dimension: the input layer is convolved with a

convolution kernel to produce the output to pass to the pooling layer.

The padding argument is one of the most important when defining such

a layer. It represents the way output data should be processed in the

borders. Since I didn’t want to introduce bias, I defined it with the value

”valid,” which means no padding.

The following is a Global Maximum Pooling over 1 dimension [35]: it aims

to reduce the dimension of the input object by selecting the maximum

value over the time dimension. Often it is used to level up performances.

The remaining layers are some Dense [36] of different shapes: the most

relevant is the final, which has 7 output neurons as the classes’ number.
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Figure 7.7: The structure of the model based on the use of a convolutional layer

2. RNN

Figure 7.8 represents the alternative: a model made up to exploit the

RNN potential. It has the same embedding layer as input, followed by

a Spatial Dropout layer over 1 dimension [37]: it’s a particular type of

dropout. It takes as input a 3D tensor, but instead of dropping just a

single value, it considers a whole 1D feature map. This way, it can push

independence between this kind of data. This has, as a consequence, the

effective regularization when dealing with neighbor data strictly correlated.

However, the most important layer is the LSTM [38]: this is the main-

stream layer to have an RNN (see section 3.3 to go deeper with what’s an

RNN). The only positional argument I had to set is the units, which tells

us how big the output space will be. I set it to 100 neurons and applied a

dropout of 0.2 to prevent some neurons from being influenced by the linear

transformation inside the layer.

The rest are a pair of Dense layers of different shapes, with the last one

having 7 neurons just like the number of classes.
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Figure 7.8: The structure of the model based on the use of a recurrent layer

Results

Both models led to encouraging and similar outcomes, achieving respectively

78% and 77,6% accuracy and a log loss of 0.790 and 0.780.

Then a doubt came to my mind: ”how would both models perform with original

data?” With ”original data”, I mean data with entailment, greetings, and repet-

itive sentences. The experiment resulted in a particular outcome: the accuracy

is a little lower, but the same happened with the log loss: the next table shows

the differences in the model with RNN logic.

Cleaned Original

Accuracy 77,6% 76,3%

Loss 0,780 0,663

These results hinted at the origin of the problem: the performances are in-

fluenced by the data dirtiness but less than I would have expected.

Being an initial test, I couldn’t be sure about the previous statement, so I pro-

ceeded with the classification by subtype to discover if the way I was grouping

in classes had any responsibility.

7.2.3 Classification by Subtype

Having the same amount of samples, I maintained the division in train, valida-

tion, and test set as exposed in subsection 7.2.2.
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The figure 7.9 represents the classes obtained by filtering out the ones with less

than 750 samples, resulting in 11 different classes with 18.680 samples.

Figure 7.9: The dataset composition after filtering out classes with less than 750
samples

I immediately tried the subsample technique to have a more balanced distri-

bution, resulting in the next dataset of 13.601 samples, as figure 7.10 shows:

Figure 7.10: The dataset composition after subsampling

As the last operation over the data, I shuffled the dataset to have a better

chance to have each class in every subset of the dataset itself.
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Data preprocessing

This phase had been realized exactly as explained in the homonymous subsection

in 7.2.2 when I was dealing with Types classes.

Model development

I maintained the Zero Rule as the baseline for my model, this time with a value

of 26,6% of accuracy.

Keeping things simple, I firstly used a quite simple model to see if it could

generalize well. After an initial Embedding layer, I stacked a GlobalAverage-

Pooling layer over 1 dimension [39]: it acts like the Global Maximum Pooling

layer but instead of taking the maximum value, it considers the average of all

the given numbers. After that, it was time to introduce again a pair of Dense

layers, this time using a stricter regularizer: the L1. It takes its name from the

norm that perform:

||w||1 = |w1|+ |w2|+ ...+ |wn| (7.10)

Any regularizer influences the loss function that will be changed with an

additive member as follows:

L1 = (wx+ b− y)2 + λ|w| (7.11)

where the regularisation parameter λ > 0 is manually tuned.

L1 regularizer, really like L2, is useful: the term λ, when updating the weights

of the model, has the role of changing the weights in a manner to reduce the

chances of overfitting because it shifts away from the original weight values.

Between these two layers, there was a Dropout one to help prevent overfitting

too. All of this just before the last Dense layer with 11 neurons, one for each

class.

However, I did not have a particular fortune, as summarized in table 7.1.

This made me rethink the CNN model previously used when classifying by type.

Even this time, I could not pass the threshold of 80% accuracy; it was the target

value for a good initial model.

At that point, I thought to increase the complexity of the model by trying

to use a layer I had never used before: the Bidirectional [40]. It is a wrapper for

RNNs that combines the output of an RNN layer such as the previously used
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LSTM or the GRU [41]. It propagates the input forward and backward through

the LSTM layer and finally concatenates the output. When dealing with long

sequences, it could help since Italian is a language where it’s easy to formulate

long sentences and thus harder to interpret.

This model resulted in a better performance than the two previously men-

tioned experiments but not as much to feel satisfied with what has been done.

The next table shows the obtained results.

Simple model CNN Bidirectional RNN

Accuracy 63,7% 73,2% 78,3%
Loss 1,083 0,53 0,747

Table 7.1: Results classifying by Type

7.3 The turning point

At some point I was perplexed. The input did not seem to be that difficult to

generalize, even though there was a discrete number of different classes.

With the previously obtained results, I understood that the main problem

was not either in the classification by Type or Subtype, nor in the dirtiness of

the raw data. Surely one approach led me to better results but not as intended.

I then tried to examine even deeper the initial dataset. At that moment, I

realized what the problem was.

7.3.1 The crucial metric

While realizing this model, I understood the importance of considering the right

metric to examine the produced outcomes.

I did get what was the underlying problem just when I analyzed the con-

fusion matrix. I first translated the acronym nomenclature to a more human-

understandable one. Then I used that matrix when classifying by type, and

what’s reported in figure 7.11 is what I discovered:

It is clear that most of the errors are conveyed to the cells ”Other” X ”Product

information and availability”. This means the model misunderstands when it’s

time to classify with these two classes. I’m considering this example because it’s

the most relevant.
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Figure 7.11: The initial confusion matrix

The problem is inherent to the nature of the data. The Description column

with the value ”Live Chat” appears many times in both classifications (78% in

Other and the remaining 22% in Product information and availability).

A more in-depth examination reveals that there are 451 cases classified with

”Other” (27% of the cases detected before) and 372 (80% of the data considered

before) classified as ”Product information and availability” that have the same

data in ”Subject” and ”Description”, which are the only columns I can use as

input data. The initial human classification metrics differed according to the

person who made these associations (see figure 7.3.1).
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Figure 7.3.1: the samples involved in the misclassification of ”Other” and ”Prod-

uct information and availability”.

Noticing this kind of situation in other couples of classes, I used a little script

to disambiguate the wrong classification. This way, texts like the previously

mentioned ”Live Chat” had been redirected to a single class.

As a positive consequence, this let me have a bigger set of classes to con-

sider while classifying and have a more balanced situation without operating

any downsampling, as shown in figure 7.12:

Figure 7.12: The italian dataset after removing any human mismatch

Passing from 7 to 12 passable classes represented a big step forward to a
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complete classification.

Initial results

The effects of the data disambiguation led to a performance increase of the same

model without changing the structure. I used the model that uses a Convolution

layer.

Table 7.2 reports the initial metrics that were much better than what I had

achieved so far.

Accuracy Loss Precision Recall F1

80,9% 0.662 79,5% 83,9% 81,6%

Table 7.2: initial results after removing any mismatch

7.3.2 Upsampling

After encouraging results, I thought I would be able to reach new better perfor-

mances carrying out an upsampling technique.

This section explores the different techniques I tried:

1. Translation:

Translating and re-translating sentences in the original language of the

ticket is not a bad idea to obtain slightly different samples. At the same

time it is very limiting because it consists of making requests to the Google

Translate API, which are limited. Therefore it cannot be considered a

definitive solution, being much less satisfactory.

2. Markov Chains :

The Markov property implies a generation of tokens based just on the last

one provided. The agent acting in this process, therefore, has no memory.

In text modeling, the token is the word to produce. Thus the model does

not know the context of the sentence and anything that concerns it, as

when it will end or what the subject is. It is limited to predict the next

word that has a high probability of appearing. This property is described

with the following formula:

P (Xk|Xk−1, Xk−2, ..., Xk−n) = P (Xk|Xk−1) (7.12)
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To use this technique, it is necessary to have a clear input text from any

special character such as punctuation, with a uniformed case. It is also

useful to define the end of a sentence character.

Setting the minimum number of sentences for each class lets me have a

more balanced dataset. This value was set to 1000. It was not calculated

but was so as not to have a high number of synthetic data since just 4

classes did not reach that limit initially (see figure 7.12).

Results

The model performed way better with an improvement on each metric:

Accuracy Loss Precision Recall F1

82,3% 0.586 81,6% 85,1% 83,3%

Table 7.3: Results applying the Markov chains

3. Class Weights :

Even if the Markov Chains gave me pretty good performances, I tried with

this alternative way to think about the problem. The Sklearn library lets

me set a weight of importance for each class given the number of samples

[42].

The ’balanced’ option was what I was looking for since it is thought for

unbalanced datasets, even if it’s an estimation.

Results

The outcomes constituted an additive improvement looking at what I had

done before with the Markov Chains, especially regarding accuracy, preci-

sion, and the F1-score.

The only worse metric was the loss, stating that there’s more uncertainty

whenever an assumption is made. However being a difference of just 0,041

it was not a big deal.

Accuracy Loss Precision Recall F1

84,0% 0.627 83,5% 85,1% 84,3%

Table 7.4: Results applying a different weight for each class
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Even the confusion matrix reported encouraging upshots, as reported next.

Figure 7.13: The confusion matrix after setting a specific class weight for each
class

This option was the selected one to apply even to the Subtype classification.
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7.4 The final solution

As the initial column target was the subtype and not the type, I chose to apply

what I’ve previously done when dealing with Type classes. I took a cue from the

model structure and experiments to have a confirmation of the obtained results.

7.4.1 Data loading

I still considered the Italian dataset with 25.683 initial entries and filtered out

the classes setting a threshold of samples down to 500.

The resulted dataset had 20.525 entries with the following division:

• 18.472 entries to the training set (90%)

• 1026 entries to the validation set (5%)

• 1027 entries to the test set (5%)

To have a more balanced initial situation I performed a little downsampling over

the classes C2 (Order Information) and I1 (Return procedure authorization) that

had much more samples than the others. I translated the classes’ names to a

more human-readable nomenclature, merged with the columns ”Subject” and

”Description” in a more generic ”Text”, and applied the disambiguation script

to throw away any possible controversial human classification.

The resulting dataset is the one represented in figure 7.14.

Figure 7.14: The final classes’ distribution
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7.4.2 Data preprocessing

The procedure was analogous to what has been performed in the classification

by Type (subsection 7.2.2).

7.4.3 Model development

The choice to have a different weight for each class was applied to this solution

too.

In addition, the three mentioned before callbacks were added:

• the learning rate scheduler

• the learning rate on plateau reducer

• the early stopper

The number of considered classes increased from 12 up to 14. Therefore,

when dealing with the structure, I made a few changes to the Type classification

model to help it to generalize more.

Figure 7.15: The final model structure

As figure 7.15 represents, right after an initial embedding layer, I stacked

many dropout layers throughout the structure with a 30% probability of turning

off some neurons when updating the weights.

Then a convolutional layer over 1 dimension helped me find relationships

between neighboring words with ”valid” padding and a stride of 1. This last value
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indicates how many positions at each step the filter is shifted when computing

the convolution.

The Global Maximum Pooling layer over 1 dimension was applied to reduce

the input and level up performances.

Then three Dense layers were added to maintain the discovered features and

find some remaining insights. Except for the last Dense layer that has a softmax

as the activation function, all of the other layers use the ReLU function.

The Rectified Linear Unit function works pretty well with lots of tasks,

and it’s fast to compute. It results in the function 7.13

ReLU = max(0, x) (7.13)

Unfortunately it is not differentiable when the input has value 0. Another

characteristic is that its derivative is 0 for x < 0.

It is important to have this kind of function because it constitutes the way

the net learns. Not having a non-linearity between layers means that stacking

even a big number of layers is always equivalent to a single layer. Therefore,

complex problems couldn’t be solved.

Figure 7.16 represents the ReLU and its derivative.

Figure 7.16: The ReLU function and its derivative

The loss function is an important aspect that deviates from the binary clas-

sification solution explained in the previous chapter. Instead of a binary cross-

entropy, I selected a more suitable categorical cross-entropy function. I used

it because I had sparse labels since there was just a target class index for each

instance.
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This function computes the loss through this formula:

Loss = −
O∑
i=1

yi ∗ log ŷi (7.14)

where

ŷi = the i-th value in the model output

yi = the target value

O = the output size; the amount of scalar values in the model output

It represents a measure of how distinguishable two discrete probability distri-

butions are from each other. Specifically, yi is the probability that the event i

occurs. The sum of all the events is equal to 1, meaning just one event occurs

at a time.

The minus sign instead has the role in reducing the loss when distributions

are more similar and thus closer to each other.

This mathematical explanation made it the best loss function I could use in

my case.

7.4.4 Results

When training it with a batch size of 32 samples and 50 epochs, I got better,

and mostly acceptable, results that are exposed in the next table:

Accuracy Loss Precision Recall F1

80,8% 0.655 77,2% 81,0% 79,1%

Table 7.5: Final performances classifying by Subtype

Even the confusion matrix shown good insights of how the model was per-

forming (figure 7.17).
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Figure 7.17: Final confusion matrix representation

A relevant data is the 26 that represents misclassifications between the classes

”Return instructions and timings” and ”Return procedure authorization”. It’s

something I was prepared to face since it’s strictly correlated between two Sub-

type classes belonging to the same Type.

The following image 7.18 show that some words’ sequences are present a lot

in both classifications. I took an attentive look at the sentences containing the

sequence ”Resi e rimborsi” but there were many more in common.

Since this kind of sequence is assiduous (looking at this very example respec-

tively at 35% and 21% of the samples), it would have been possible to evaluate

their deletion.

After a consultation with the company’s data scientist, it seemed more ap-

propriate to deal with this kind of problem in a manner not to distort this data’s

nature, as explained in the chapter Future Developments.
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Figure 7.18: Controversial classifications in ”Return instructions and timings”
and ”Return procedure authorization”

7.4.5 Deployment

Once the model had been trained, tested, and saved locally, it was time to

perform the deployment. It was first added to the new Docker microservice to

maintain a pluggable nature with the OTML structure.

To deploy a ML model over MLflow it’s essential to define a backend store

and an artifact store. These are the components that are part of the Tracking

API MLflow makes available. They are responsible for respectively persisting

MLflow entities such as runs, parameters, and metrics and, as the name suggests,

persisting artifacts like files, models, and images. For internal use, it’s sufficient

to use a local directory as the backend store and another one as the artifact.

But when deploying and serving the model, it’s necessary to use it as the
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backend one of the allowed databases. This is so to save the model in the

appropriate MLflow registry. Since I was not constrained to use any special

database, I took advantage of an instance of SQLite, one of the simplest libraries

to implement a SQL DBMS.

This was possible running MLflow with the following CLI commands:

1. export MLFLOW TRACKING URI=http://localhost:500

2. mlflow server --backend-store-uri sqlite:///mlflow.db

--default-artifact-root ./artifacts/

After tracking down the training phase of the model, it was possible to visu-

alize it in the MLflow UI in the Artifact section as in figure 7.19

Figure 7.19: Artifact section in MLflow UI

This visualization is useful since it gives information about the stored re-

sources on the left, the schema the model has to be constrained to, and how to

make predictions using different dataset formats. Next, it is possible to register

it on a specific deployment phase, as shown in figure 7.20:
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Figure 7.20: Models section in MLflow UI

After transiting the model to a specific area, it’s possible to carry out the

serving phase. I did it specifying the following command:

mlflow models serve -m "models:/model name/Staging" -p 1234

It makes available on the tracking URI at the port 1234 the model called

model name to be trained and to use it to make predictions.



Chapter 8

Future developments

Every year, new technologies become available, and people want ever more effi-

cient softwares to deal with.

The microservice has achieved good results but surely there are margins of

improvement. The text classification has its limitations: it cannot say when a

ticket is urgent and when it’s not, and cannot properly classify messages coming

from different languages.

That is why we thought about two important improvements.

1. Multilingualism

As shown in section 3.3, there are already various multilingual models

that have reached performances that just some years ago would have been

literally unbelievable.

It’s then possible to implement this feature that will make it more world-

wide than now. As a consequence, this service would be more desirable

even to foreign business users.

2. Class clustering

A technique with considerable potential is undoubtedly the GSOM [43],

used even by Google to always obtain new labels in its Gmail service.

Being able to group any classes that are too specific and very similar in

terms of embedding can lead to an improvement in performance.

Instead, using a clustering algorithm to discover new classes would allow

to gain new knowledge from the data that is provided by the customer.

83
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3. Sentiment Analysis

Although most of the time the classification is correct, it does not assign

any priority. The sentiment analysis right does so. It computes a real value

that states whenever a user is angry, satisfied, stressed, doubtful and so

on. The lower is the numeric value, the higher priority an issue gets.

When dealing with SLA, it’s crucial to fix and patch the biggest problems.

Every company does not have unlimited time to dedicate to a specific

project. The Service-Level Agreements indicate this limitation.

When signing a contract with some business user, the SLAs even say the

maximum resolution time expected. Every contract is signed considering

the area in which it is related (for instance the e-commerce orders) and the

priority.

They have become a common tool for effectively measuring services. This

involves the payment of penalties in case of failure to reach these levels.

Thus it is better to first solve the issues with the highest priority.

To define the latter one there are two philosophies:

(a) if the user does not set any priority when submitting the request, then

the sentiment analysis is useful to cover this lack of information

(b) if the user sets the priority, often it is a blocker or urgent level. It’s

understandable from the user’s point of view: they want their issue to

be resolved as soon as possible. But the reality is that just a minor-

ity of cases are blockers. In this eventuality, the sentiment analysis

system can moderate that value and scale it back to a more realistic

one.



Conclusions

In this thesis two Artificial Intelligence algorithms had been implemented to

solve a specific linguistic task: text classification.

There was a single data source; a dataset containing thousands of closed

tickets, each one presenting a specific issue encountered by a user. Each ticket

was classified to its class.

The first algorithm specifically had the role to anonymize and clean the input

text, performing a binary classification to identify whenever a sentence was useful

to the scope of the ticket or not. It exploited the Transfer Learning technique,

applied to a relatively shallow neural network. The results were high and thus

this first easier task was accomplished in a relatively small time.

The second algorithm was instead built up from the grounds layer-by-layer.

After an excursus on the classical ML algorithms, it was necessary to switch

to a more complex solution, involving again a neural network. Due to the low

number of instances of the secondary languages, it was not possible to make it

multilingual. For this reason, it constitutes a future development, together with

a class treatment with a clustering approach. The class handling presented some

issues, even if mostly turned out to be caused by human misclassifications.

The Deep Learning approach is demonstrated to have more calculus power

than what the classical solutions have to offer. Nevertheless, this power has to

come along with much more data. For this reason, it constitutes a limit that

depends on external agents, and consequently, it makes Deep Learning not an

always pursuable route.

The initial objective of this project has been achieved, but it leaves room for

the addition of new features, such as Sentiment Analysis, and algorithm enhance-

ments. Some various technologies and discoveries can be combined with what

has already been developed to be able to make even more accurate predictions.
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